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Abstract

This paper examines how the Bank of Japan (BOJ)’s “Inflation-Overshooting
Commitment” and cost-push shocks contributed to its exit from a liquidity trap
during 2024–2025. To this end, we use a New Keynesian model incorporating
shocks to demand and inflation, along with simple monetary policy rules. Our
simulations show that such rules, especially those that maintain a zero interest
rate even amid high inflation after 2021, can significantly elevate inflation. Under
a price-level targeting rule, inflation exceeds 2 percent, while the average infla-
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These findings indicate that both policy commitment and cost-push shocks played
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1 Introduction

In September 2016, the Bank of Japan (BOJ) announced its “Inflation-Overshooting

Commitment” as part of the policy framework known as “Quantitative and Qualita-

tive Monetary Easing with Yield Curve Control.”1 Under this commitment, the BOJ

promised to continue monetary easing by maintaining its the zero interest rate policy

until the year-on-year CPI inflation rate stably exceeded the 2 percent target. Despite

the disruptions caused by the COVID-19 pandemic, the BOJ confirmed in March 2024

that inflation had sufficiently overshot the 2 percent target and therefore ended the zero

interest rate policy.

Our motivation in this paper is to investigate whether the BOJ’s inflation-overshooting

commitment actually worked to raise inflation rates to over 2 percent and thereby end

the zero interest rate policy, or whether other elements, such as cost-push shocks, created

the conditions that allowed the BOJ to escape a liquidity trap.

To reveal this, we adopt the conventional New Keynesian model with inflation per-

sistence, which has been widely used in monetary policy analyses particularly because it

captures the relationship between inflation and monetary policy, as in Woodford (2003)

and Christiano et al. (2005). To describe the BOJ’s monetary policy, we assume a set

of conventional simple monetary policy rules. Identifying the BOJ’s actual policy rule

is typically difficult; in this case, however, the BOJ offers guidance on the nature of

its policy commitment. Ueda (2023) explains that the BOJ maintains the stance that

it will continue expanding the monetary base until the year-on-year rate of increase in

the observed CPI (all items less fresh food) exceeds 2 percent and remains stably above

the target. This stance implies a prolonged zero and low interest rate policy. One way

to represent such a history-dependent policy through a simple rule is to include lagged

variables. For example, Bank of Japan (2021) examines the inflation-overshooting com-

1See Bank of Japan (2016) for details. Kawamoto et al. (2025) explains that the BOJ’s “Quantitative

and Qualitative Monetary Easing with Yield Curve Control”consists of two elements, “Yield Curve Con-

trol (YCC)”and “Inflation-Overshooting Commitment.” Our paper focuses on “Inflation-Overshooting

Commitment.”
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mitment using the BOJ’s macroeconomic model and similarly assumes a simple monetary

policy rule that includes lagged inflation rates.

In our paper, we assume a variety of monetary policy rules, such as the Taylor-type

rule, the price-level targeting rule, and the average inflation targeting rule, which differ

in their degrees of commitment. We apply our model to the BOJ’s exit policy from the

zero interest rate policy following the pandemic. Here, we assume shocks to demand

and inflation because the Japanese economy experienced a steep decline in output and

deflationary pressures in 2020 due to the pandemic. After 2021, cost-push shocks, such

as commodity price surges and yen depreciation, contributed to rising inflation, as noted

by Ikeda et al. (2022). To analyze the Japanese economy after 2020, it is therefore

necessary to incorporate these shocks into the model. Through a variety of simulations,

we quantitatively evaluate whether a prolonged zero interest rate policy achieves inflation

overshooting and whether cost-push shocks contribute to the BOJ’s exit from the zero

interest rate policy.

The simulation results show that the Taylor-type rule does not cause inflation over-

shooting, even though the zero interest rate policy continues for a sufficiently prolonged

period, consistent with the BOJ’s policy stance. In this case, cost-push shocks, rather

than monetary policy, contribute to high inflation and provide the BOJ with an oppor-

tunity to terminate the zero interest rate policy under the inflation-overshooting com-

mitment. Under the price-level targeting rule, inflation rates exceed 2 percent and the

zero interest rate policy continues even after such high inflation. The monetary policy

commitment thus helps generate sustained inflation and facilitates the BOJ’s exit from

the zero interest rate policy. In any case, we conclude that the BOJ successfully im-

plemented its exit policy under an inflation-overshooting commitment, having sustained

the zero interest rate policy long enough, even amid high inflation. These results remain

robust across a variety of parameters and models. Analysis using the average inflation

targeting rule shows that the reality lies between the Taylor-type rule and the price-level

targeting rule, with both the monetary policy commitment and the cost-push shocks

contributing to exiting a liquidity trap.
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The literature on monetary policy is extensive, and our paper relates to three strands

of prior research. First, our paper relates to analyses of monetary policy research based

on a New Keynesian model. The theory of monetary policy has been developed since the

1990s based on the New Keynesian model, as represented by Clarida et al. (1999) and

Woodford (2003). Christiano et al. (2005) and Smets and Wouters (2007) extend the

New Keynesian model to a medium-sized dynamic stochastic general equilibrium model

for monetary policy analysis. They estimate the hybrid Phillips curve and show that a

simple monetary policy rule welll describe the U.S. economy.

Second, our paper relates to the literature on monetary policy in a liquidity trap.

Eggertsson and Woodford (2003b,a) and Jung et al. (2001, 2005) show that a key feature

of optimal monetary policy in a liquidity trap is history dependence: a central bank needs

to maintain a zero interest rate even after the natural rate turns positive and inflation

exceeds a level above the target. Nakata and Schmidt (2019) assume that the objective

function for a discretionary central bank includes an interest-rate smoothing term. This

modification encourages keeping the policy rate low for a longer duration in a liquidity

trap, implying a history-dependent monetary policy. Budianto et al. (2023) show that

monetary policy aimed at stabilizing the average inflation rate effectively captures a

history-dependent monetary policy in a liquidity trap.

Third, our paper relates to quantitative analyses of monetary policy in a liquidity

trap. Several studies evaluate the BOJ’s monetary policy in a liquidity trap. Kawamoto

et al. (2025) analyze the BOJ’s inflation-overshooting commitment as an implementation

of a “makeup strategy” using an estimated model of the Japanese economy. They assume

Taylor-type rules and show that a prolonged zero interest rate policy with inflation

overshooting can function as a makeup strategy for achieving the inflation target at

an earlier stage. In contrast, Ikeda et al. (2022) analyze inflation dynamics before and

after the pandemic. They argue that cost-push pressures, including commodity price

increases and yen depreciation, temporarily raise inflation in the post-pandemic period.

They further argue that these effects are not persistent. Their analysis suggests that

cost-push shocks can induce high inflation at the time when the BOJ terminates the
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zero interest rate policy in 2024. Our paper is closely related to Kawamoto et al. (2025)

and Ikeda et al. (2022). All three papers evaluate the effectiveness of the BOJ’s inflation-

overshooting commitment. A key difference is that we apply the analysis to the actual

exit from the zero interest rate policy in 2024, following the pandemic.

Lastly, our paper is also related to Hasui and Teranishi (2025). A clear difference

between the two papers is that they assume optimal monetary policy rather than a

simple monetary policy rule. They show that the BOJ’s monetary policy shares several

similarities with optimal monetary policy in a liquidity trap. Optimal monetary policy

indicates the path of each variable, but it is difficult to clearly show how the BOJ

reacts in actual policy conduct. In contrast, our paper uses simple and implementable

monetary policy rules to clarify how the central bank responds to inflation, the output

gap, and lagged variables. Moreover, although optimal monetary policy is one candidate

to explain the BOJ’s monetary policy, our paper presents alternative rules that replicate

the key features of the BOJ’s monetary policy.

The remainder of the paper is organized as follows. In Section 2, we explain a

brief history of the BOJ’s monetary policy. Section 3 presents the model incorporating

inflation persistence. In Section 4, we calibrate the model. Section 5 presents simulation

results under the Taylor-type rule and the price-level targeting rule. Section 6 quantifies

the roles of monetary policy commitment and cost-push shocks in exiting a liquidity

trap. Section 7 presents sensitivity analyses across a variety of parameters and models.

Section 8 concludes the paper.

2 Brief History of BOJ’s Monetary Policy: Commit-

ment Policy

The BOJ has long implemented monetary policies to respond to the conditions of low in-

flation and low growth that have persisted in the Japanese economy since the mid-1990s.

In 1999, the BOJ first introduced the zero interest rate policy, which BOJ Governor

Masaru Hayami committed to continuing until deflationary concerns were dispelled. By
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this commitment, the BOJ intended to create high expected inflation and a low real

interest rate to stimulate the Japanese economy.

The BOJ introduced several additional commitments after 1999. For example, in

March 2001, the BOJ introduced “Quantitative Monetary Easing” and committed to

targeting the BOJ’s current account balance until CPI inflation stabilized at or above

0 percent. Moreover, in April 2013, the BOJ introduced “Quantitative and Qualitative

Monetary Easing” and promised to achieve the price stability target of 2 percent at

the earliest possible time, with a time horizon of about two years. For this, the BOJ

adopted monetary base control and promised to double the monetary base and the

amounts outstanding of Japanese government bonds as well as exchange-traded funds in

two years.2

To strengthen its commitment policy, in September 2016 the BOJ introduced the

inflation-overshooting framework under which it continued monetary easing by main-

taining the zero interest rate policy until the year-on-year CPI inflation stably exceeded

the 2 percent target. This represented a more explicit commitment to stronger monetary

easing than before, as the BOJ clarified that exceeding a 2 percent inflation rate served

as its criterion for exiting the zero interest rate policy.

During the pandemic in 2020, the Japanese economy temporarily experienced signif-

icant negative shocks related to the output gap and inflation. After the pandemic, the

economy showed quick recovery and high inflation partially driven by cost-push pressures,

such as commodity price hikes and yen depreciation. Given this historical background,

the BOJ finally faced a situation in which inflation has stably exceeded 2 percent since

2022. This high inflation reflected steady economic activity. Bank of Japan (2022, “The

Bank’s View”) emphasizes the role of a cost-push shocks and argues that the year-on-

year rate of change in the consumer price index is likely to remain positive due to high

energy prices in January 2022. At the same time, the BOJ predicts that CPI inflation

will remain around 1, although the positive contribution of the rise in energy prices is

expected to wane. Therefore, at that time, the BOJ judged that monetary easing was

2Please see details in Bank of Japan (2013).
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not enough to return the inflation rate to the 2 percent target, even though the year-on-

year rate of change in the CPI was 2.7 percent in 2022. On the other hand, in January

2025, Bank of Japan (2025) emphasizes steady economic activity and concludes that

CPI inflation is expected to increase, since the output gap will improve and medium- to

long-term inflation expectations will rise, while the effects of import price increases are

expected to wane.

After confirming inflation-overshooting and steady economic activity, the BOJ ter-

minated the zero interest rate policy and increased the policy rate to between 0 and 0.1

percent in March 2024. The BOJ then raised the policy rate to 0.5 percent in January

2025 and further increased the policy rate to 0.75 percent in December 2025. As of

January 2026, it is in the process of further increasing the policy rate. Terminating the

zero interest rate policy under inflation stably above 2 percent is an ideal scenario for

the inflation-overshooting commitment policy.

3 The Model

We use a New Keynesian model followingWoodford (2003) and Eggertsson andWoodford

(2006) and omit detailed explanations of the model. The macroeconomic structure is

expressed by the two equations:

xt = Etxt+1 − χ (it − Etπt+1 − rnt ) , (1)

πt − γπt−1 = κxt + β (Etπt+1 − γπt) + µt, (2)

where xt, it and πt denote the output gap, the nominal interest rate (or policy rate),

and the rate of inflation in period t, respectively. χ is the intertemporal elasticity of

substitution of expenditure, β is a discount factor, γ (0 ≤ γ ≤ 1) is the degree of

inflation persistence, and

κ =
(1− α)(1− βα)

α

ω + χ−1

1 + ωθ
,

where ω is the elasticity of a firm’s real marginal cost and θ is an elasticity of substitution

across goods. It should be noted that the slope of the Phillips curve κ depends on price
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stickiness α. Et is the expectations operator conditional on information available at time

t. rnt is the natural rate of interest and acts as the shock. µt is the cost-push shock.

Equation (1) is the forward-looking IS curve, as shown in Clarida et al. (1999) and

Woodford (2003). The IS curve states that the current output gap is determined by

the expected value of the output gap and the deviation of the current real interest rate,

defined as it − Etπt+1, from the natural interest rate.

Equation (2) is the hybrid Phillips curve. When γ = 0, the hybrid Phillips curve

transforms into a purely forward-looking Phillips curve, where current inflation depends

on expected inflation and the current output gap. When 0 < γ ≤ 1, the Phillips curve is

both forward-looking and backward-looking, and the current inflation rate depends on

the lagged inflation rate, as well as expected inflation and the current output gap. When

γ is closer to 1, the coefficient on the lagged inflation rate is closer to 0.5. Following the

indexation rule in Woodford (2003), some firms that can not reoptimize their own goods

prices adjust current prices based on the past inflation rate.

Finally, we give a nonnegativity constraint on the nominal interest rate:

it ≥ 0. (3)

To close the model, we need a monetary policy rule.

4 Calibration for Japanese Economy

Table 1 shows the parameter values. We use parameter values estimated in previous

studies of the Japanese economy. Sugo and Ueda (2008) estimate a DSGE model for the

Japanese economy and show that α = 0.875, ω = 2.149, and θ = 6.3 Then, we calculate

κ = 0.0048, and λx = 0.0008. Iiboshi et al. (2022) estimate a Japanese DSGE model

and show χ = 0.646.

For inflation persistence, Kawamoto et al. (2025) use a coefficient of 0.85 on the lagged

inflation rate to evaluate the BOJ’s inflation-overshooting commitment policy in the

3Mukoyama et al. (2021) also estimate high price stickiness as α = 0.82.
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BOJ’s small-scale projection model. Moreover, to evaluate quantitative and qualitative

monetary easing policy, Kawamoto et al. (2023) use the BOJ’s macroeconomic model, in

which a coefficient on the lagged inflation rate in the Phillips curve is estimated at 0.69.

These papers show substantial inflation persistence in Japan.4 Thus, we use γ = 1.5

As shown in Woodford (2004), the model does not change when we set γ = 1, even

for a non-zero inflation target π̄. For a non-zero inflation target, the inflation rate in

the model is described as πt − π̄. However, in the hybrid Phillips curve of Equation (2),

πt−πt−1 is equivalent to πt− π̄− (πt−1− π̄). In the forward-looking IS curve of Equation

(1), the non-zero inflation target appears to shift up the steady-state level of the nominal

interest rate: it − (Etπt+1 − π̄)− (rnt + π̄).

For the simulations, we need to set the anchored inflation expectation in the steady

state and the natural rate of interest. Osada and Nakazawa (2024) show that the principal

component-based composite index of inflation expectations for different forecast horizons

is about 1.5 percent at the end of 2023. Moreover, Bank of Japan (2024) shows that the

break-even inflation rate is about 1.5 percent in April 2024. Thus, we set the anchored

inflation expectation, which serves as the steady-state and target inflation rate, at 1.5

percent. Regarding the natural interest rate in the steady-state, Bank of Japan (2024)

shows several estimates due to difficulties in calculating an exact natural interest rate.

The latest estimates of the natural interest rates are distributed around −0.5 in 2023.

In our model, the long-run nominal interest rate is given by the sum of an anchored

inflation expectation and the natural rate of interest. Therefore, the nominal interest

rate in the steady-state is set at 1 percent annually, and a discount factor, i.e., the inverse

of the nominal interest rate, is given by β = 0.9975.

In simulations, we interpret the second quarter of 2020 as the starting point, since we

observe the largest negative shocks for the output gap and the inflation rate due to the

pandemic. The output gap is −6.3 percent and the inflation rate is −2.8 percent annually

4Sugo and Ueda (2008) also estimates γ as high as 0.862.

5These papers imply that γ = 1 is still conservative in describing inflation persistence since γ = 1

corresponds to about 0.5 for a coefficient on the lagged inflation rate, as shown in Equation (2).
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in the second quarter of 2020.6 Regarding shocks for the simulation, we apply a one-

time negative natural rate shock and a one-time negative cost-push shock without shock

persistence, following Eggertsson and Woodford (2003b), to match the model results to

the data for the inflation rate and the output gap in the second quarter of 2020, as shown

in Figure 1, for example.7 Moreover, we provide a positive cost-push shock to match the

average inflation rate for 2021Q1-2022Q4 between the data and the model simulation.

As discussed in Ikeda et al. (2022), inflation rates rise quickly during this period, and

these high inflation rates can be driven by cost-push pressures, such as commodity price

hikes and yen depreciation. In implementation, we describe this by assuming a positive

cost-push shock in 2021Q4. The simulations are based on perfect foresight, and we use

Dynare to run them.8

5 Analyses with Conventional Monetary Policy Rules

We first assume conventional monetary policy rules: the Taylor rule with an interest rate

lag and the price-level targeting rule. We examine a variety of monetary policy rules in

the following sections.

6We use the Real Gross Domestic Product (Expenditure), Quarterly, Seasonally Adjusted Annual

Rate for the output gap. We create a trend series of one-year moving averages and calculate the gap

from the trend series to real GDP. For inflation rates, we use the Consumer Price Index for all items,

less fresh food, seasonally adjusted for inflation rates. We calculate the annual inflation rate from the

growth rate from a previous period. For the BOJ’s policy rate, we use the call rate, uncollateralized

overnight, average, annually.

7In simulations, we use the inflation rate data from the first quarter of 2020 as an inflation lag in the

model in period 0. Before shocks occur, other variables are set to zero.

8We extend the code by Johannes Pfeifer for optimal monetary policy in a liquidity trap, available at

JohannesPfeifer/DSGE mod/blob/master/Gali 2015/Gali 2015 chapter 5 commitment ZLB.mod. Our

code is available upon request.
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5.1 Taylor-type Rule

We assume the Taylor-type rule with an interest rate lag as follows:

it = max [0, (1− ρi) {i∗ + ϕπ(πt − π̄)}+ ρiit−1] , (4)

where ϕπ and ρi are positive parameters. This rule includes history dependence by

gradually changing the interest rate. We set ϕπ = 5, ρi = 0.842.9

Figure 1 shows inflation rates, the output gap, and policy rates under the Taylor rule

with an interest rate lag from the second quarter of 2020 to the fourth quarter of 2025, as

well as the corresponding Japanese data.10 It indicates that the Taylor-type rule exhibits

strong history dependence, with a coefficient ρi = 0.842 on the interest rate lag.

We observe that the Taylor-type rule can not replicate inflation overshooting, even

though the zero interest rate policy continues throughout the simulation. The Taylor-

type rule, however, raises inflation gradually toward the end of the simulation and

achieves approximately the 2 percent target.11

As discussed in Ikeda et al. (2022), cost-push pressures temporarily raise the inflation

rate after the pandemic. This suggests that inflation overshooting is caused by these

cost-push shocks, and the BOJ’s role is to patiently continue the zero interest rate policy

under high inflation rates. If there were no cost-push shocks, the BOJ would not be able

to achieve inflation overshooting. Thus, the inflation overshooting promised by the BOJ

is due to the presence of cost-push shock and not to the BOJ’s monetary policy.

This analysis indicates that the BOJ follows the conventional Taylor-type rule but

excludes responses to cost-push shocks. This is the implementation of the inflation-

overshooting commitment. Figure 2 shows a case where we apply cost-push shocks to

match the average inflation rate for 2021Q1-2022Q4 between the data and the model

9For example, Fujiwara et al. (2013) assume ϕπ = 5, and Sugo and Ueda (2008) set ρi = 0.842.

10We assume a −8.65 percent natural rate shock and a −0.86 percent cost-push shock at time zero

on a quarterly basis.

11Hasui and Teranishi (2025) show a similar result using the Taylor-type rule without a policy rate

lag. We show this case in the Appendix.
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simulation.12 The results show that the zero interest rate policy ends very early and the

output gap declines sharply, which is inconsistent with the data.

To evaluate the simulation results, we use the root mean squared error (RMSE). The

details of RMSE are in Appendix A. The results for our figures are shown in Table 2.

In Figure 1, RMSEπ is 2.35 which is sufficiently large when compared to other cases, as

shown in the following sections. The total RMSE L is relatively small at 3.44 due to

good matches with the output gap and the policy interest rate. In Figure 2, the total

RMSE L is very large due to poor consistency with all the data.

We also show averages of variables for 2020Q2–2024Q4 in simulations and data in

Table 3. The average inflation rate is −0.1 percent in the simulation under the Taylor-

type rule, whereas it is 1.72 percent in the data. The Taylor-type rule can not achieve

high inflation.

5.2 Price-level Targeting Rule

We assume the Price-level targeting rule as follows:

it = max [0, i∗ + ϕppt + ϕxxt] , (5)

where pt is the price level, and we define πt − π̄ = pt − pt−1. We set ϕp and ϕx as

positive parameters. This price level is evaluated from an inflation deviation from the

steady state” to “The first difference of the price level reflects the deviation of inflation

from a non-zero inflation target π̄. However, there remains an important feature of price

level targeting, which maintains the zero-interest rate policy until the initial price level

is recovered. This creates strong history dependence in a liquidity trap. We set ϕp = 1.5

and ϕx = 0.5.

We often discuss whether the Taylor rule is a guideline for monetary policy. The price-

level targeting rule is an alternative candidate to describe monetary policy, as Eggertsson

12We assume −4.14 percent of the natural rate shock and −0.98 percent of the cost-push shock at

time zero, along with an additional cost-push shock of 0.42 percent at time 6 (2021Q4) on a quarterly

basis.
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and Woodford (2003b) show that the price-level targeting rule can be a proxy for optimal

monetary policy with history dependence in a liquidity trap.

Figure 3 shows inflation rates, the output gap, and policy rates under the price-level

targeting rule.13 We observe that inflation rates rise to more than 2 percent, and the zero

interest rate policy continues even after inflation rates sufficiently exceed 2 percent. This

is consistent with the BOJ’s inflation-overshooting commitment, which allows inflation

rates to stably exceed the 2 percent target. The model simulation closely replicates

inflation rates and the output gap.

When we include cost-push shocks to match the average inflation rate for 2021Q1-

2022Q4 between the data and the model simulation, as shown in Figure 4, the timing

to terminate the zero interest rate policy occurs earlier, and the model’s fit to inflation

rates, the output gap, and policy rates improves.14 This suggests that the cost-push

shocks, as well as the monetary policy commitment, are quantitatively important factors

in exiting from a liquidity trap.

In Figure 3, RMSEπ is 1.41, which is much smaller than that in Figure 1, as shown

in Table 2. Thus, consistency with inflation rates improves significantly under the price-

level targeting rule. On the other hand, RMSEx is larger in Figure 3 than in Figure 1,

since the zero interest rate persists longer and the output gap increases in Figure 3. In

Figure 4, the total RMSE L improves to 3.31, which is better than under the Taylor rule,

as consistency with the output gap improves due to a shorter zero interest rate policy.

As shown in Table 3, the average inflation rate is 1.4 percent in the simulation under

the price-level targeting rule and 1.72 percent in the data. The average inflation rate

increases slightly to 1.53 percent with a cost-push shock. The price-level targeting rule

achieves high inflation rates to replicate the data.

13We assume −15.45 percent of the natural rate shock and −0.99 percent of the cost-push shock at

time zero on a quarterly basis.

14We assume a −14.33 percent natural rate shock and a −1.03 percent cost-push shock at time zero,

as well as an additional cost-push shock of 0.15 percent at time 6 on a quarterly basis.
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6 Evaluating Roles of Commitment and Shock

We assume a more flexible monetary policy rule to ensure that the model accurately

describes the data. In particular, we search for the best pairing of commitment degree

and shock size. This allows us to quantitatively evaluate the roles of monetary policy

commitment and cost-push shocks while improving the consistency of the output gap

and the nominal interest rate with the data.

We assume the following average inflation targeting rule:

it = max[0, i∗ + ϕπ̂π̂t + ϕxxt],

π̂t = (πt − π̄) + (1− ωπ)π̂t−1.
(6)

Equation (6) nests three cases: when ωπ = 1, it corresponds to the Taylor rule; when

0 < ωπ < 1, it corresponds to the average inflation targeting rule; and when ωπ = 0, it

corresponds to the price-level targeting rule. As ωπ decreases, the power of commitment

increases.

To show the decomposition of the roles of monetary policy commitment and cost-

push shocks, we also search for the optimal size of a cost-push shock at time 6, as in

previous simulations where we introduce the cost-push shock at time 6 to match the

average inflation rate for 2021Q1–2022Q4 between the data and the model simulation.

We also match the initial sizes of cost-push and natural rate shocks to the data under

other search processes. Thus, we search over ϑ = [ωπ, µ0, µ6, r
n
0 ]

⊤.

The consistency with the data is evaluated using the RMSE. The sample period is

2020Q2–2024Q4. The parameter search is conducted as follows:

min
ϑ

L(ϑ) = wπRMSEπ(ϑ) + wxRMSEx(ϑ) + wiRMSEi(ϑ) (7)

RMSEz(ϑ) =

√√√√ 1

T

T∑
t=0

[
zt(ϑ)− zdatat

]2
, for z = π, x, i,

where πt(ϑ), xt(ϑ), and it(ϑ) denote the model’s outputs for inflation, the output gap, and

the nominal interest rate, respectively. πdata
t , xdata

t , and idatat denote the corresponding

data for inflation, the output gap, and the nominal interest rate, respectively. The model
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time index t = 0, ..., T corresponds to 2020Q2-2024Q4. The weights wπ, wx, and wi are

set to unity, i.e., wπ = wx = wi = 1. For parameters that are not estimated, all values are

set to those reported in Table 1, except for ϕπ̂ and ϕx. For ϕπ̂ and ϕx, we set ϕπ̂ = 2.07

and ϕx = 0.137 following Iiboshi et al. (2022).

Table 4 shows the estimates of ϑ. The table indicates that equation (6) with ωπ = 0.23

is much closer to the price-level targeting rule than to the Taylor-type rule. The estimate

of µ6 is 0.08 percent quarterly, suggesting that only a small positive cost-push shock is

required, since we set µ6 = 0.42 for the Taylor-type rule in Figure 2 and µ6 = 0.15 for

the price-level targeting rule in Figure 4.

Figure 5 presents the simulation results under the estimated ϑ. The figure shows that

there is no overshooting of inflation beyond 2 percent, but the zero interest rate policy

continues even after inflation rates remain stably close to 2 percent for an extended

period. The match to inflation rates improves significantly when compared to the Taylor

rule case in Figures 1 and 2. Moreover, the consistency of the output gap with the data

also improves. The nominal interest rate departs from the zero lower bound earlier than

in the data. As shown in Table 2, a total RMSE L is 2.82, and this is one of the best

values across our simulations.

The simulation results imply that both commitment and the cost-push shock are

quantitatively important factors in increasing inflation and the output gap.

7 Sensitivity Analysis

7.1 Discounted Euler Equation

As shown in Del Negro et al. (2023), the impact of forward guidance is too powerful in

New Keynesian models. Some previous studies address this issue, known as the forward

guidance puzzle, in models that discount the responses to the output gap to inflation

expectations and real interest rates in the IS curve, as shown in McKay et al. (2017),

Nakata et al. (2019), and Gabaix (2020).
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Following McKay et al. (2017), we assume a discounted IS curve as follows:

xt = δEtxt+1 − ζχ (it − Etπt+1 − rnt ) . (8)

The discounted Euler equation differs from the IS curve since discounting parameters δ

and ζ are multiplied by the expected output gap and the real interest rate, respectively.

We set δ = 0.97 and ζ = 0.75 following McKay et al. (2017) and δ = 0.856 following

Hirose et al. (2024). Other parameters are given in Table 1.

Figures 6a-c show the simulation results under the Taylor-type rule.15 Compared

with the results in Figure 1, both inflation rates and the output gap decrease. The zero

interest rate policy lasts longer than in Figure 1, since the effect of forward guidance is

weakened.

Figures 6d–f show the case under the Taylor-type rule when we include cost-push

shocks to match the average inflation rate for 2021Q1-2022Q4 between the data and the

model simulation.16 The simulation result is very poor at explaining the output gap

data.

Figures 7a-c show the simulation results under the price-level targeting rule.17 Com-

pared to the results in Figure 3, the overshooting of the output gap in period 0 is well

mitigated in Figure 7b. In addition, since the effect of forward guidance is weakened, the

zero interest rate policy lasts longer than in Figure 3, and the overshooting of inflation

occurs in later periods.

15We assume a −9.81 percent natural rate shock and a −0.82 percent cost-push shock at time zero,

on a quarterly basis, for the case of δ = 0.97 and ζ = 0.75. We can not converge the simulation for the

case of δ = 0.856 and ζ = 0.75.

16We assume a −8.76 percent the natural rate shock and a −0.99 percent the cost-push shock at time

zero, and an additional cost-push shock of 0.38 percent at time 6 on a quarterly basis for the case of

δ = 0.97 and ζ = 0.75. We assume a −11.63 percent natural rate shock and a −1.00 percent cost-push

shock at time zero, and an additional cost-push shock of 0.33 percent at time 6 on a quarterly basis for

the case of δ = 0.856 and ζ = 0.75.

17We assume a −11.75 percent natural rate shock and a −0.88 percent cost-push shock at time zero

on a quarterly basis for the case of δ = 0.97 and ζ = 0.75. We assume a −16.70 percent natural rate

shock and a −0.95 percent cost-push shock at time zero on a quarterly basis for the case of δ = 0.856

and ζ = 0.75.
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Figures 7d–f show the case under the price-level targeting rule when we include cost-

push shocks to match the average inflation rate for 2021Q1-2022Q4 between the data

and the model simulation.18 Compared to Figure 4, Figure 7e shows that the response

of the output gap improves sufficiently.

As shown in Table 2, RMSEx and the total RMSE L in Figure 7 are smaller than

those in Figures 3 and 4. Table 3 shows that the average of the output gap improves

to 1.91 (0.71) from 2.49 (1.25) in the data 0.21 without (with) the cost-push shock for

δ = 0.97 and ζ = 0.75. For δ = 0.856 and ζ = 0.75, the average of the output gap

sufficiently improves to 0.82 (0.37) without (with) the cost-push shock.

7.2 Two Percent Inflation Rate in the Steady-state

We change the inflation rate and the natural interest rate in the steady-state. Following

the BOJ’s official inflation target rate, we set the inflation rate in the steady-state, i.e.,

the target rate of inflation π̄, at 2 percent, though this value is not supported by the

data, as shown in Osada and Nakazawa (2024) and Bank of Japan (2024). At the same

time, we set the natural interest rate in the steady-state at −1 percent, which is the

lowest estimate reported, as shown in Bank of Japan (2024). Then, the steady-state

nominal interest rate does not change and is given by 1 percent.

Figure 8 shows the case of the Taylor-type rule.19 We observe a similar result to that

shown in Figure 1. The Taylor-type rule can not generate inflation overshooting even

though the zero interest rate policy lasts longer. The Taylor-type rule, however, raises

inflation toward the end of the simulation and achieves the 2 percent target, which gives

the BOJ an opportunity to terminate the zero interest rate policy after a high inflation.

18We assume −13.61 percent of the natural rate shock and −1.00 percent of the cost-push shock at

time zero, and an additional cost-push shock of 0.20 percent at time 6 on a quarterly basis for the case

of δ = 0.97 and ζ = 0.75. We assume −16.27 percent of the natural rate shock and −1.02 percent of the

cost-push shock at time zero, and an additional cost-push shock of 0.18 percent at time 6 on a quarterly

basis for the case of δ = 0.856 and ζ = 0.75.

19We assume a −7.50 percent natural rate shock and a −0.85 percent cost-push shock at time zero

on a quarterly basis.
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Figure 9 shows the case of the price-level targeting policy.20 We observe that inflation

exceed 2 percent, and the zero interest remains stably above 2 percent, as shown in

Figure 3.

In an alternative calibration, the natural interest rate in the steady-state is set at

−0.5 percent, the baseline calibration in Table 1. The steady-state of the nominal interest

rate is then set to 1.5 percent, and the inflation target remains at 2 percent. Figure 10

shows the case of the Taylor-type rule. Compared to the results in Figure 8, inflation

approaches 2 percent earlier but does not result in significant overshooting, and the zero

interest rate policy ends earlier. Figure 11 shows the case of the price-level targeting

policy.21 Compared to the results in Figure 9, the zero interest rate policy ends earlier

but continues even after inflation remains stably above 2 percent.

These results suggest that even when the inflation target is set at 2 percent, the

findings presented in Sections 5.1 and 5.2 remain unchanged.

7.3 Augmented Taylor-type Rule

The analysis of the price-level targeting rule demonstrated that a rule with strong his-

tory dependence can generate inflation overshooting and earlier termination of the zero

interest rate policy with a small cost-push shock.

In this section, we conduct a simulation under the augmented Taylor-type rule with

strong history dependence, as proposed by Reifschneider and Williams (2000), as follows:

it = max [0, ı̃t − ϕzzt] ,

ı̃t = (1− ρi) {i∗ + ϕπ(πt − π̄) + ϕxxt}+ ρiı̃t−1,

zt = zt−1 + (it − ı̃t),

(9)

where ı̃t denotes the nominal shadow rate and zt denotes the cumulative past deviation of

the nominal interest rate from the nominal shadow rate. The monetary policy rule, which

20We assume a −15.6 percent natural rate shock and a −1.01 percent cost-push shock at time zero

on a quarterly basis.

21We assume a −17.57 percent natural rate shock and a −1.03 percent cost-push shock at time zero

on a quarterly basis.
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is proposed by Reifschneider and Williams (2000), is used to compare its performance

with the optimal commitment policy as in Nakov (2008).22 We set ϕz to 0.5 following

Nakov (2008) and set ϕx to 0, with other parameters as given in Table 1.

Figures 12a–c show inflation rates, the output gap, and policy rates under the aug-

mented Taylor rule from the second quarter of 2020 to the fourth quarter of 2025, as well

as these Japanese data.23 Unlike the previous simulation results based on the Taylor-

type rule, we observe that inflation exceeds 2 percent, and the zero interest rate policy

persists even after inflation remains stably above 2 percent. Interestingly, this result is

highly similar to the simulation results of the price-level targeting rule in Figure 3.

Figures 12d–f show the result when we include cost-push shocks to match the average

inflation rate for 2021Q1-2022Q4 between the data and the model simulation. This result

is also highly similar to the simulation results of the price-level targeting rule in Figure 4:

The zero interest rate policy is terminated earlier, and the model’s fit to inflation, the

output gap, and policy rates improves.24

As Nakov (2008) mentions, the augmented Taylor-type rule has influenced US mon-

etary policy from 2003 to 2005. Figure 12 suggests that a monetary policy rule that

incorporates cumulative past information on the interest rate can be important in ex-

plaining Japan’s macroeconomic behavior in the post-pandemic period. Together with

the result in Section 5.2, we can conclude that a monetary policy with a prolonged zero

interest rate policy replicates inflation overshooting and escapes a liquidity trap. This

implies that the BOJ can achieve these outcomes by implementing a prolonged zero

interest rate policy.

22Nakata and Tanaka (2016) use Reifschneider and Williams (2000)’s monetary policy rule to analyze

the effects of forward guidance.

23We assume a −14.85 percent natural rate shock and a −0.98 percent cost-push shock at time zero

on a quarterly basis.

24We assume a −13.50 percent natural rate shock and a −1.03 percent cost-push shock at time zero,

and an additional cost-push shock of 0.18 percent at time 6 on a quarterly basis.
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7.4 Low Elasticity of Demand to the Real Interest Rate

In this section, we assume a low intertemporal elasticity of substitution of expenditure,

i.e., a low elasticity of the output gap to the real interest rate. Weak demand is one

reason for the prolonged low growth in Japan. Following the estimate by Cashin and

Unayama (2016), we set χ = 0.21 for the simulation.25

Figures 13a–c show the simulation results under the Taylor-type rule.26 We observe

a similar result to that shown in Figure 1. The Taylor-type rule can not replicate

inflation overshooting even though the zero interest rate policy continues long enough.

Figures 13d–f show the case in which we apply cost-push shocks to match the average

inflation rate for 2021Q1-2022Q4 between the data and the model simulation.27 The

result contradicts the data, as shown in Figure 2. The zero interest rate policy ends at

a very early stage, and the output gap decreases significantly.

Figures 14a–c show the results under the price-level targeting rule.28 As in Figure 3,

we observe that inflation exceeds 2 percent, and the zero interest rate policy continues for

a prolonged period. The model’s fit to inflation, the output gap, and the nominal interest

rate improves compared to Figure 3. Figures 14d–f show the case under the price-level

targeting rule in which we include cost-push shocks to match the average inflation rate

for 2021Q1-2022Q4 between the data and the model simulation.29 We observe that the

zero interest rate policy is terminated earlier compared to the case with no cost-push

shock.

As shown in Table 2, the total RMES L is the lowest at 2.26 among the simulations

25For parameters other than χ, we use the values shown in Table 1.

26We assume a −28.30 percent natural rate shock and a −0.82 percent cost-push shock at time zero

on a quarterly basis.

27We assume a −23.50 percent natural rate shock and a −0.96 percent cost-push shock at time zero,

along with an additional cost-push shock of 0.38 percent at time 6 on a quarterly basis.

28We assume a −28.3 percent natural rate shock and a −0.82 percent cost-push shock at time zero,

on a quarterly basis.

29We assume a −34.11 percent natural rate shock and a −0.99 percent cost-push shock at time zero,

and an additional cost-push shock of 0.20 percent at time 6 on a quarterly basis.
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in Figures 14d–f, indicating that the model describes the data well. Table 3 shows that

the average output gap (inflation) in Figures 14d–f is 0.13 (1.5) relative to the data value

of 0.21 (1.72).

7.5 Inflation Persistence

In this section, we analyze how the simulation results change with different degrees of

inflation persistence, such as γ set to 0 (purely forward-looking), 0.358 (Hirose, 2020),

0.631 (Hirose and Kurozumi, 2012), and 0.862 (Sugo and Ueda, 2008).30 For these

simulations, we replace πt with πt− π̄ in the Phillips curve (2), where π̄ is an exogenously

given anchored inflation rate and πt = π̄ in the steady-state.

Figures 15a–c show the results under the Taylor-type rule.31 We observe that the

rise in the inflation rate occurs later, and that the zero interest rate policy lasts longer

as γ becomes larger. This indicates that higher inflation persistence leads to a longer

period of deflation, requiring a longer zero interest rate policy under the Taylor-type

rule. However, in all cases of γ, there is no overshooting of inflation above 2 percent,

and the zero interest rate policy ends earlier in the simulations than in the data.

Figures 15d–f show the case in which we give cost-push shocks to match the average

inflation rate for 2021Q1-2022Q4 between the data and the model simulation.32 We

observe that, as γ becomes larger, it takes longer for inflation to exceed 2 percent, even

in the presence of a positive cost-push shock. Therefore, the zero interest rate policy

lasts longer as γ increases. However, similar to the result in Figure 2, the zero interest

rate policy ends much earlier in the simulation than in the data, indicating that the

simulation result contradicts the data.

30For parameters other than γ, we use the values shown in Table 1.

31We assume −10.99, −11.11, −10.92, and −10.20 percent natural rate shocks and −1.06, −0.97,

−0.91, and −0.87 percent cost-push shocks at time zero on a quarterly basis for the cases of γ = 0,

0.358, 0.631, and 0.862, respectively.

32We assume −5.05, −6.92, −7.18, and −5.85 percent natural rate shocks, −1.30, −1.10, −1.01, and

−0.97 percent cost-push shocks at time zero, and 0.42, 0.27, 0.24, and 0.31 percent of the additional

cost-push shocks at time 6 on a quarterly basis for the cases of γ = 0, 0.358, 0.631, and 0.862, respectively.
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Figures 16a–c show the results under the price-level targeting rule.33 We observe

overshooting of inflation above 2 percent for all values of γ. When γ is lower, inflation

overshooting occurs earlier. As γ increases, greater inflation overshooting occurs later.

The zero interest rate policy lasts longer as γ increases, but for all values of γ, the

simulation results for the nominal interest rate closely resemble the data.

Figures 16d–f show the case in which we apply cost-push shocks to match the average

inflation rate for 2021Q1-2022Q4 between the data and the model simulation.34 We

observe that the simulation results for γ = 0.862 are consistent with the data, even when

including a positive cost-push shock.35 While γ = 0.358, the zero interest rate policy

ends earlier than in the data, and the simulation results for the output gap and inflation

are more consistent with the data compared to the Taylor-type rule results shown in

Figures 12d–f.

8 Concluding Remarks

We use the New Keynesian model and simple monetary policy rules to evaluate whether

an inflation-overshooting commitment can raise inflation above 2 percent to end the zero

interest rate policy, or whether cost-push shocks lead to high inflation rates in the BOJ’s

exit policy from a liquidity trap in 2024-2025.

Our analyses reveal a monetary policy commitment effect that achieves high inflation

and a high output gap. The monetary policy commitment, in addition to cost-push

shocks, contributes to the exit from a liquidity trap. We also show that the BOJ does

not respond to positive cost-push shocks when implementing the exit from the zero

33We assume −15.62, −15.62, −15.55, and −15.44 percent natural rate shocks and −1.20, −1.11,

−1.04, and −1.00 percent cost-push shocks at time zero on a quarterly basis for the cases of γ = 0,

0.358, 0.631, and 0.862, respectively.

34We assume −13.88 and −15.14 percent natural rate shocks, −1.14 and −1.01 percent cost-push

shocks at time zero, and 0.13 and 0.04 percent of the additional cost-push shocks at time 6 on a

quarterly basis for the cases of 0.358 and 0.862, respectively.

35Due to the simulation’s technical constraints, we present only the cases of γ = 0.358 and γ = 0.862.
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interest rate policy. The BOJ mainteined the zero interest rate policy under high inflation

until March 2024. These two successful actions changed our inflationary expectations

and actual inflation. This is the BOJ’s implementation of an inflation-overshooting

commitment.
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Table 1: Calibration for Japan

Parameters Values Explanation

β 0.9975 Discount Factor

χ 0.646 Intertemporal Elasticity of Substitution of Expenditure

ω 2.149 Elasticity of Firm’s Real Marginal Cost

θ 6 Elasticity of Substitution across Goods

κ 0.0048 Elasticity of Inflation to Output Gap

α 0.875 Price Stickiness

γ 1 Degree of Inflation Persistence

ϕπ 5 Coefficient of Inflation in Taylor Rule

ρi 0.842 Coefficient of Interest rate Lag in Taylor Rule

ϕx 0.5 Coefficient of the Output Gap in Price-level Rule

ϕp 1.5 Coefficient of Price in Price-level Rule

i∗ 1 Steady-state Nominal Interest Rate (Annual)
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Table 2: Comparison of RMSE

Figure: policy rule L RMSEπ RMSEx RMSEi

Fig. 1: TR 3.44 2.35 1.05 0.04

Fig. 2: TR ∗ 7.39 1.74 3.15 2.50

Fig. 3: PLTR 4.15 1.41 2.66 0.07

Fig. 4: PLTR ∗ 3.31 1.48 1.68 0.15

Fig. 5: AITR ∗ 2.81 1.73 0.80 0.28

Fig. 6: Dis. IS TR, δ = 0.97, ζ = 0.75 4.08 2.82 1.19 0.07

Dis. IS TR, δ = 0.97, ζ = 0.75 ∗ 6.62 1.70 2.36 2.57

Dis. IS TR, δ = 0.856, ζ = 0.75 ∗ 5.89 1.66 1.59 2.64

Fig. 7: Dis. IS PLTR, δ = 0.97, ζ = 0.75 3.51 1.50 1.94 0.07

Dis. IS PLTR, δ = 0.97, ζ = 0.75 ∗ 2.67 1.49 1.04 0.14

Dis. IS PLTR, δ = 0.856, ζ = 0.75 3.23 1.84 1.32 0.07

Dis. IS PLTR, δ = 0.856, ζ = 0.75 ∗ 2.53 1.48 0.78 0.26

Fig. 8: TR, π̄ = 2 3.49 2.24 1.19 0.07

Fig. 9: PLTR, π̄ = 2 4.41 1.41 2.92 0.07

Fig. 10: TR, π̄ = 2, r∗ = −0.5 3.36 1.89 1.28 0.19

Fig. 11: PLTR, π̄ = 2, r∗ = −0.5 4.82 1.41 3.34 0.06

Fig. 12: ATR 4.00 1.45 2.47 0.07

ATR ∗ 3.16 1.53 1.37 0.26

Fig. 13: TR, χ = 0.21 3.54 2.62 0.85 0.07

TR, χ = 0.21 ∗ 5.99 1.69 1.69 2.61

Fig. 14: PLTR χ = 0.21 2.56 1.51 0.98 0.07

PLTR χ = 0.21 ∗ 2.26 1.50 0.67 0.10

Fig. 15: TR, γ = 0 3.46 1.91 0.76 0.79

TR, γ = 0.358 3.22 1.82 0.69 0.71

TR, γ = 0.631 2.97 1.74 0.63 0.60

TR, γ = 0.862 2.87 1.83 0.72 0.32

TR, γ = 0 ∗ 7.69 2.31 2.83 2.56

TR, γ = 0.358 ∗ 6.31 2.11 2.17 2.02

TR, γ = 0.631 ∗ 5.79 1.95 1.99 1.86

TR, γ = 0.862 ∗ 6.36 1.81 2.44 2.12

Fig. 16: PLTR, γ = 0 3.57 1.98 1.50 0.09

PLTR, γ = 0.358 3.57 1.89 1.61 0.07

PLTR, γ = 0.631 3.57 1.74 1.79 0.05

PLTR, γ = 0.862 3.71 1.48 2.15 0.07

PLTR, γ = 0.358 ∗ 3.36 2.04 0.85 0.47

PLTR, γ = 0.862 ∗ 3.49 1.53 1.91 0.05

Note: L =
∑

z RSMEz for z = π, x, i. TR, PLTR, AITR, and ATR denotes Taylor-type rule, price-level

targeting rule, average inflation targeting rule, and augmented Taylor rule, respectively. π̄ and r∗ denote

anchored inflation rate and natural rate at the steady-state, respectively. Asterisk “∗” denotes the case

with positive cost-push shocks.
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Table 3: Comparison of Average

Average for 2020Q2–2024Q4

Figure: policy rule π x i

Data 1.72 0.21 0.00

Fig. 1: TR −0.10 0.63 0.02

Fig. 2: TR ∗ 1.22 −2.53 2.03

Fig. 3: PLTR 1.40 2.49 0.00

Fig. 4: PLTR ∗ 1.53 1.25 0.08

Fig. 5: AITR ∗ 0.81 0.54 0.16

Fig. 6: Dis. IS TR, δ = 0.97, ζ = 0.75 −0.62 0.03 0.00

Dis. IS TR, δ = 0.97, ζ = 0.75 ∗ 1.26 −1.87 2.11

Dis. IS TR, δ = 0.856, ζ = 0.75 ∗ 1.30 −1.19 2.17

Fig. 7: Dis. IS PLTR, δ = 0.97, ζ = 0.75 1.22 1.91 0.00

Dis. IS PLTR, δ = 0.97, ζ = 0.75 ∗ 1.53 0.71 0.07

Dis. IS PLTR, δ = 0.856, ζ = 0.75 0.73 0.82 0.00

Dis. IS PLTR, δ = 0.856, ζ = 0.75 ∗ 1.53 0.37 0.12

Fig. 8: TR, π̄ = 2 0.06 0.53 0.00

Fig. 9: PLTR, π̄ = 2 1.87 2.75 0.00

Fig. 10: TR, π̄ = 2, r∗ = −0.5 0.49 1.17 0.12

Fig. 11: PLTR, π̄ = 2, r∗ = −0.5 1.94 3.00 0.00

Fig. 12: ATR 1.26 2.33 0.00

ATR ∗ 1.45 0.79 0.10

Fig. 13: TR, χ = 0.21 −0.40 0.03 0.00

TR, χ = 0.21 ∗ 1.26 −1.20 2.14

Fig. 14: PLTR χ = 0.21 1.18 0.88 0.00

PLTR χ = 0.21 ∗ 1.50 0.13 0.04

Fig. 15: TR, γ = 0 1.29 −0.16 0.75

TR, γ = 0.358 1.19 −0.06 0.62

TR, γ = 0.631 1.00 0.09 0.47

TR, γ = 0.862 0.57 0.39 0.21

TR, γ = 0 ∗ 1.61 −1.98 2.26

TR, γ = 0.358 ∗ 1.46 −1.48 1.74

TR, γ = 0.631 ∗ 1.33 −1.38 1.56

TR, γ = 0.862 ∗ 1.24 −1.84 1.74

Fig. 16: PLTR, γ = 0 1.50 1.36 0.07

PLTR, γ = 0.358 1.50 1.45 0.05

PLTR, γ = 0.631 1.50 1.59 0.03

PLTR, γ = 0.862 1.49 1.93 0.00

PLTR, γ = 0.358 ∗ 1.50 0.46 0.34

PLTR, γ = 0.862 ∗ 1.50 1.63 0.01

Note: TR, PLTR, AITR, and ATR denotes Taylor-type rule, price-level targeting rule, average inflation

targeting rule, and augmented Taylor rule, respectively. π̄ and r∗ denote anchored inflation rate and

natural rate at the steady-state, respectively. Asterisk “∗” denotes the case with positive cost-push

shocks.
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Table 4: Estimated values for ωπ, µ0, µ6, and rn0

Parameters ωπ µ0 µ6 rn0

Estimated values 0.23 −0.74 0.08 −11.21
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Figure 1: Taylor-type Rule
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Figure 2: Taylor-type Rule with Cost-push Shock
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Figure 3: Price-level Targeting Rule
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Figure 4: Price-level Targeting Rule with Cost-push Shock
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Figure 5: Average Inflation Targeting Rule when ωπ = 0.23 and µ6 = 0.08.
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Figure 6: Taylor-type Rule: Discounted Euler Equation
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Figure 7: Price-level Targeting Rule: Discounted Euler Equation
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Figure 8: Taylor-type Rule under 2 Percent Target
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Figure 9: Price-level Targeting Rule under 2 Percent Target
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Figure 10: Taylor-type Rule under 2 Percent Target, −0.5 Percent Natural Rate, and

1.5 Percent Nominal Interest Rate
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Figure 11: Price-level Targeting Rule under 2 Percent Target, −0.5 Percent Natural

Rate, and 1.5 Percent Nominal Interest Rate

42



-4

-3

-2

-1

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Model Data

Percent Change (Annual)

2020Q2

(a) Inflation

2024Q3

2 percent inflation target

Zero inflation

-8

-6

-4

-2

0

2

4

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Percent 

2020Q2

(b) Output Gap

2024Q3

Zero output gap

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Percent  (Annual)

2020Q2

(c) Nominal Interest Rate

2024Q3

2 percent

Zero rate

-4

-3

-2

-1

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Model Data

Percent Change (Annual)

2020Q2

(d) Inflation

2024Q3

2 percent 
inflation target

Zero inflation

-8

-6

-4

-2

0

2

4

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Percent 

2020Q2

(e) Output Gap

2024Q3

Zero output gap

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Percent  (Annual)

2020Q2

(f) Nominal Interest Rate

2024Q3

2 percent

Zero rate

Figure 12: Augmented Taylor Rule
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Figure 13: Taylor-type Rule: Low Elasticity of Demand to the Real Interest Rate
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Figure 14: Price-level Targeting Rule: Low Elasticity of Demand to the Real Interest

Rate
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Figure 15: Taylor-type Rule: Inflation Persistence
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Figure 16: Price-level Targeting Rule: Inflation Persistence
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Appendix

A Assessment of the Model’s Consistency with Data

We assess the simulation results using the root mean squared error (RMSE) as follows.

RMSEz =

√√√√ 1

T

T∑
t=0

[
zt − zdatat

]2
, for z = π, x, i,

where zt denotes simulation results and zdatat denotes the data. The time index t = 0, ..., T

corresponds to 2020Q2–2024Q4. We define L as the sum of RMSEz.
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