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Abstract

This paper examines how the Bank of Japan (BOJ)’s “Inflation-Overshooting
Commitment” and cost-push shocks contributed to its exit from a liquidity trap
during 2024-2025. To this end, we use a New Keynesian model incorporating
shocks to demand and inflation, along with simple monetary policy rules. Our
simulations show that such rules, especially those that maintain a zero interest
rate even amid high inflation after 2021, can significantly elevate inflation. Under
a price-level targeting rule, inflation exceeds 2 percent, while the average infla-
tion targeting rule stabilizes inflation close to 2 percent over an extended period.
These findings indicate that both policy commitment and cost-push shocks played
a quantitative role in raising inflation and widening the output gap, ultimately
facilitating the BOJ’s exit policy.
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1 Introduction

In September 2016, the Bank of Japan (BOJ) announced its “Inflation-Overshooting
Commitment” as part of the policy framework known as “Quantitative and Qualita-
tive Monetary Easing with Yield Curve Control.”! Under this commitment, the BOJ
promised to continue monetary easing by maintaining its the zero interest rate policy
until the year-on-year CPI inflation rate stably exceeded the 2 percent target. Despite
the disruptions caused by the COVID-19 pandemic, the BOJ confirmed in March 2024
that inflation had sufficiently overshot the 2 percent target and therefore ended the zero
interest rate policy.

Our motivation in this paper is to investigate whether the BOJ’s inflation-overshooting
commitment actually worked to raise inflation rates to over 2 percent and thereby end
the zero interest rate policy, or whether other elements, such as cost-push shocks, created
the conditions that allowed the BOJ to escape a liquidity trap.

To reveal this, we adopt the conventional New Keynesian model with inflation per-
sistence, which has been widely used in monetary policy analyses particularly because it
captures the relationship between inflation and monetary policy, as in Woodford (2003)
and Christiano et al. (2005). To describe the BOJ’s monetary policy, we assume a set
of conventional simple monetary policy rules. Identifying the BOJ’s actual policy rule
is typically difficult; in this case, however, the BOJ offers guidance on the nature of
its policy commitment. Ueda (2023) explains that the BOJ maintains the stance that
it will continue expanding the monetary base until the year-on-year rate of increase in
the observed CPI (all items less fresh food) exceeds 2 percent and remains stably above
the target. This stance implies a prolonged zero and low interest rate policy. One way
to represent such a history-dependent policy through a simple rule is to include lagged

variables. For example, Bank of Japan (2021) examines the inflation-overshooting com-

1See Bank of Japan (2016) for details. Kawamoto et al. (2025) explains that the BOJ’s “Quantitative
and Qualitative Monetary Easing with Yield Curve Control” consists of two elements, “Yield Curve Con-
trol (YCC)”and “Inflation-Overshooting Commitment.” Our paper focuses on “Inflation-Overshooting

Commitment.”



mitment using the BOJ’s macroeconomic model and similarly assumes a simple monetary
policy rule that includes lagged inflation rates.

In our paper, we assume a variety of monetary policy rules, such as the Taylor-type
rule, the price-level targeting rule, and the average inflation targeting rule, which differ
in their degrees of commitment. We apply our model to the BOJ’s exit policy from the
zero interest rate policy following the pandemic. Here, we assume shocks to demand
and inflation because the Japanese economy experienced a steep decline in output and
deflationary pressures in 2020 due to the pandemic. After 2021, cost-push shocks, such
as commodity price surges and yen depreciation, contributed to rising inflation, as noted
by Tkeda et al. (2022). To analyze the Japanese economy after 2020, it is therefore
necessary to incorporate these shocks into the model. Through a variety of simulations,
we quantitatively evaluate whether a prolonged zero interest rate policy achieves inflation
overshooting and whether cost-push shocks contribute to the BOJ’s exit from the zero
interest rate policy.

The simulation results show that the Taylor-type rule does not cause inflation over-
shooting, even though the zero interest rate policy continues for a sufficiently prolonged
period, consistent with the BOJ’s policy stance. In this case, cost-push shocks, rather
than monetary policy, contribute to high inflation and provide the BOJ with an oppor-
tunity to terminate the zero interest rate policy under the inflation-overshooting com-
mitment. Under the price-level targeting rule, inflation rates exceed 2 percent and the
zero interest rate policy continues even after such high inflation. The monetary policy
commitment thus helps generate sustained inflation and facilitates the BOJ’s exit from
the zero interest rate policy. In any case, we conclude that the BOJ successfully im-
plemented its exit policy under an inflation-overshooting commitment, having sustained
the zero interest rate policy long enough, even amid high inflation. These results remain
robust across a variety of parameters and models. Analysis using the average inflation
targeting rule shows that the reality lies between the Taylor-type rule and the price-level
targeting rule, with both the monetary policy commitment and the cost-push shocks

contributing to exiting a liquidity trap.



The literature on monetary policy is extensive, and our paper relates to three strands
of prior research. First, our paper relates to analyses of monetary policy research based
on a New Keynesian model. The theory of monetary policy has been developed since the
1990s based on the New Keynesian model, as represented by Clarida et al. (1999) and
Woodford (2003). Christiano et al. (2005) and Smets and Wouters (2007) extend the
New Keynesian model to a medium-sized dynamic stochastic general equilibrium model
for monetary policy analysis. They estimate the hybrid Phillips curve and show that a
simple monetary policy rule welll describe the U.S. economy.

Second, our paper relates to the literature on monetary policy in a liquidity trap.
Eggertsson and Woodford (2003b,a) and Jung et al. (2001, 2005) show that a key feature
of optimal monetary policy in a liquidity trap is history dependence: a central bank needs
to maintain a zero interest rate even after the natural rate turns positive and inflation
exceeds a level above the target. Nakata and Schmidt (2019) assume that the objective
function for a discretionary central bank includes an interest-rate smoothing term. This
modification encourages keeping the policy rate low for a longer duration in a liquidity
trap, implying a history-dependent monetary policy. Budianto et al. (2023) show that
monetary policy aimed at stabilizing the average inflation rate effectively captures a
history-dependent monetary policy in a liquidity trap.

Third, our paper relates to quantitative analyses of monetary policy in a liquidity
trap. Several studies evaluate the BOJ’s monetary policy in a liquidity trap. Kawamoto
et al. (2025) analyze the BOJ’s inflation-overshooting commitment as an implementation
of a “makeup strategy” using an estimated model of the Japanese economy. They assume
Taylor-type rules and show that a prolonged zero interest rate policy with inflation
overshooting can function as a makeup strategy for achieving the inflation target at
an earlier stage. In contrast, Tkeda et al. (2022) analyze inflation dynamics before and
after the pandemic. They argue that cost-push pressures, including commodity price
increases and yen depreciation, temporarily raise inflation in the post-pandemic period.
They further argue that these effects are not persistent. Their analysis suggests that

cost-push shocks can induce high inflation at the time when the BOJ terminates the



zero interest rate policy in 2024. Our paper is closely related to Kawamoto et al. (2025)
and Ikeda et al. (2022). All three papers evaluate the effectiveness of the BOJ’s inflation-
overshooting commitment. A key difference is that we apply the analysis to the actual
exit from the zero interest rate policy in 2024, following the pandemic.

Lastly, our paper is also related to Hasui and Teranishi (2025). A clear difference
between the two papers is that they assume optimal monetary policy rather than a
simple monetary policy rule. They show that the BOJ’s monetary policy shares several
similarities with optimal monetary policy in a liquidity trap. Optimal monetary policy
indicates the path of each variable, but it is difficult to clearly show how the BOJ
reacts in actual policy conduct. In contrast, our paper uses simple and implementable
monetary policy rules to clarify how the central bank responds to inflation, the output
gap, and lagged variables. Moreover, although optimal monetary policy is one candidate
to explain the BOJ’s monetary policy, our paper presents alternative rules that replicate
the key features of the BOJ’s monetary policy.

The remainder of the paper is organized as follows. In Section 2, we explain a
brief history of the BOJ’s monetary policy. Section 3 presents the model incorporating
inflation persistence. In Section 4, we calibrate the model. Section 5 presents simulation
results under the Taylor-type rule and the price-level targeting rule. Section 6 quantifies
the roles of monetary policy commitment and cost-push shocks in exiting a liquidity
trap. Section 7 presents sensitivity analyses across a variety of parameters and models.

Section 8 concludes the paper.

2 Brief History of BOJ’s Monetary Policy: Commit-
ment Policy

The BOJ has long implemented monetary policies to respond to the conditions of low in-
flation and low growth that have persisted in the Japanese economy since the mid-1990s.
In 1999, the BOJ first introduced the zero interest rate policy, which BOJ Governor

Masaru Hayami committed to continuing until deflationary concerns were dispelled. By



this commitment, the BOJ intended to create high expected inflation and a low real
interest rate to stimulate the Japanese economy.

The BOJ introduced several additional commitments after 1999. For example, in
March 2001, the BOJ introduced “Quantitative Monetary Easing” and committed to
targeting the BOJ’s current account balance until CPI inflation stabilized at or above
0 percent. Moreover, in April 2013, the BOJ introduced “Quantitative and Qualitative
Monetary Easing” and promised to achieve the price stability target of 2 percent at
the earliest possible time, with a time horizon of about two years. For this, the BOJ
adopted monetary base control and promised to double the monetary base and the
amounts outstanding of Japanese government bonds as well as exchange-traded funds in
two years.?

To strengthen its commitment policy, in September 2016 the BOJ introduced the
inflation-overshooting framework under which it continued monetary easing by main-
taining the zero interest rate policy until the year-on-year CPI inflation stably exceeded
the 2 percent target. This represented a more explicit commitment to stronger monetary
easing than before, as the BOJ clarified that exceeding a 2 percent inflation rate served
as its criterion for exiting the zero interest rate policy.

During the pandemic in 2020, the Japanese economy temporarily experienced signif-
icant negative shocks related to the output gap and inflation. After the pandemic, the
economy showed quick recovery and high inflation partially driven by cost-push pressures,
such as commodity price hikes and yen depreciation. Given this historical background,
the BOJ finally faced a situation in which inflation has stably exceeded 2 percent since
2022. This high inflation reflected steady economic activity. Bank of Japan (2022, “The
Bank’s View”) emphasizes the role of a cost-push shocks and argues that the year-on-
year rate of change in the consumer price index is likely to remain positive due to high
energy prices in January 2022. At the same time, the BOJ predicts that CPI inflation
will remain around 1, although the positive contribution of the rise in energy prices is

expected to wane. Therefore, at that time, the BOJ judged that monetary easing was

2Please see details in Bank of Japan (2013).



not enough to return the inflation rate to the 2 percent target, even though the year-on-
year rate of change in the CPI was 2.7 percent in 2022. On the other hand, in January
2025, Bank of Japan (2025) emphasizes steady economic activity and concludes that
CPI inflation is expected to increase, since the output gap will improve and medium- to
long-term inflation expectations will rise, while the effects of import price increases are
expected to wane.

After confirming inflation-overshooting and steady economic activity, the BOJ ter-
minated the zero interest rate policy and increased the policy rate to between 0 and 0.1
percent in March 2024. The BOJ then raised the policy rate to 0.5 percent in January
2025 and further increased the policy rate to 0.75 percent in December 2025. As of
January 2026, it is in the process of further increasing the policy rate. Terminating the
zero interest rate policy under inflation stably above 2 percent is an ideal scenario for

the inflation-overshooting commitment policy.

3 The Model

We use a New Keynesian model following Woodford (2003) and Eggertsson and Woodford
(2006) and omit detailed explanations of the model. The macroeconomic structure is

expressed by the two equations:

Ty = By — x (it — Eymep — 7”?) ) (1)

T — YM—1 = KTy + B (EtWtH - ’Y7Tt) + pe, (2)

where x;, i; and m; denote the output gap, the nominal interest rate (or policy rate),
and the rate of inflation in period t, respectively. x is the intertemporal elasticity of
substitution of expenditure, f§ is a discount factor, v (0 < v < 1) is the degree of
inflation persistence, and

(1-a)(1—Ba)w+x"
Q 14+wh’

K =

where w is the elasticity of a firm’s real marginal cost and @ is an elasticity of substitution

across goods. It should be noted that the slope of the Phillips curve x depends on price
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stickiness . E; is the expectations operator conditional on information available at time
t. r{ is the natural rate of interest and acts as the shock. i is the cost-push shock.

Equation (1) is the forward-looking IS curve, as shown in Clarida et al. (1999) and
Woodford (2003). The IS curve states that the current output gap is determined by
the expected value of the output gap and the deviation of the current real interest rate,
defined as i; — E;myy 1, from the natural interest rate.

Equation (2) is the hybrid Phillips curve. When v = 0, the hybrid Phillips curve
transforms into a purely forward-looking Phillips curve, where current inflation depends
on expected inflation and the current output gap. When 0 < v < 1, the Phillips curve is
both forward-looking and backward-looking, and the current inflation rate depends on
the lagged inflation rate, as well as expected inflation and the current output gap. When
7 is closer to 1, the coefficient on the lagged inflation rate is closer to 0.5. Following the
indexation rule in Woodford (2003), some firms that can not reoptimize their own goods
prices adjust current prices based on the past inflation rate.

Finally, we give a nonnegativity constraint on the nominal interest rate:
1 > 0. (3)

To close the model, we need a monetary policy rule.

4 Calibration for Japanese Economy

Table 1 shows the parameter values. We use parameter values estimated in previous
studies of the Japanese economy. Sugo and Ueda (2008) estimate a DSGE model for the
Japanese economy and show that a = 0.875, w = 2.149, and 6 = 6.3 Then, we calculate
k = 0.0048, and A\, = 0.0008. Iiboshi et al. (2022) estimate a Japanese DSGE model
and show y = 0.646.

For inflation persistence, Kawamoto et al. (2025) use a coefficient of 0.85 on the lagged

inflation rate to evaluate the BOJ’s inflation-overshooting commitment policy in the

3Mukoyama et al. (2021) also estimate high price stickiness as o = 0.82.



BOJ’s small-scale projection model. Moreover, to evaluate quantitative and qualitative
monetary easing policy, Kawamoto et al. (2023) use the BOJ’s macroeconomic model, in
which a coefficient on the lagged inflation rate in the Phillips curve is estimated at 0.69.
These papers show substantial inflation persistence in Japan.* Thus, we use v = 1.5

As shown in Woodford (2004), the model does not change when we set v = 1, even
for a non-zero inflation target 7. For a non-zero inflation target, the inflation rate in
the model is described as m; — 7. However, in the hybrid Phillips curve of Equation (2),
T — 1 18 equivalent to my — 7 — (m;_1 — 7). In the forward-looking IS curve of Equation
(1), the non-zero inflation target appears to shift up the steady-state level of the nominal
interest rate: iy — (Eymyq — 7) — (r + 7).

For the simulations, we need to set the anchored inflation expectation in the steady
state and the natural rate of interest. Osada and Nakazawa (2024) show that the principal
component-based composite index of inflation expectations for different forecast horizons
is about 1.5 percent at the end of 2023. Moreover, Bank of Japan (2024) shows that the
break-even inflation rate is about 1.5 percent in April 2024. Thus, we set the anchored
inflation expectation, which serves as the steady-state and target inflation rate, at 1.5
percent. Regarding the natural interest rate in the steady-state, Bank of Japan (2024)
shows several estimates due to difficulties in calculating an exact natural interest rate.
The latest estimates of the natural interest rates are distributed around —0.5 in 2023.

In our model, the long-run nominal interest rate is given by the sum of an anchored
inflation expectation and the natural rate of interest. Therefore, the nominal interest
rate in the steady-state is set at 1 percent annually, and a discount factor, i.e., the inverse
of the nominal interest rate, is given by g = 0.9975.

In simulations, we interpret the second quarter of 2020 as the starting point, since we
observe the largest negative shocks for the output gap and the inflation rate due to the

pandemic. The output gap is —6.3 percent and the inflation rate is —2.8 percent annually

4Sugo and Ueda (2008) also estimates + as high as 0.862.
5These papers imply that v = 1 is still conservative in describing inflation persistence since v = 1

corresponds to about 0.5 for a coefficient on the lagged inflation rate, as shown in Equation (2).



in the second quarter of 2020.° Regarding shocks for the simulation, we apply a one-
time negative natural rate shock and a one-time negative cost-push shock without shock
persistence, following Eggertsson and Woodford (2003b), to match the model results to
the data for the inflation rate and the output gap in the second quarter of 2020, as shown
in Figure 1, for example.” Moreover, we provide a positive cost-push shock to match the
average inflation rate for 2021Q1-2022Q4 between the data and the model simulation.
As discussed in Tkeda et al. (2022), inflation rates rise quickly during this period, and
these high inflation rates can be driven by cost-push pressures, such as commodity price
hikes and yen depreciation. In implementation, we describe this by assuming a positive
cost-push shock in 2021Q4. The simulations are based on perfect foresight, and we use

Dynare to run them.®

5 Analyses with Conventional Monetary Policy Rules

We first assume conventional monetary policy rules: the Taylor rule with an interest rate
lag and the price-level targeting rule. We examine a variety of monetary policy rules in

the following sections.

6We use the Real Gross Domestic Product (Expenditure), Quarterly, Seasonally Adjusted Annual
Rate for the output gap. We create a trend series of one-year moving averages and calculate the gap
from the trend series to real GDP. For inflation rates, we use the Consumer Price Index for all items,
less fresh food, seasonally adjusted for inflation rates. We calculate the annual inflation rate from the
growth rate from a previous period. For the BOJ’s policy rate, we use the call rate, uncollateralized
overnight, average, annually.

"In simulations, we use the inflation rate data from the first quarter of 2020 as an inflation lag in the
model in period 0. Before shocks occur, other variables are set to zero.

8We extend the code by Johannes Pfeifer for optimal monetary policy in a liquidity trap, available at
JohannesPfeifer/DSGE_mod/blob/master/Gali_2015/Gali_2015_chapter_5_commitment_ZLB.mod. Our

code is available upon request.
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5.1 Taylor-type Rule

We assume the Taylor-type rule with an interest rate lag as follows:
iv =max [0, (1 — p;) {¢" + ¢r(my — T)} + piti_a], (4)

where ¢, and p; are positive parameters. This rule includes history dependence by
gradually changing the interest rate. We set ¢, = 5, p; = 0.842.°

Figure 1 shows inflation rates, the output gap, and policy rates under the Taylor rule
with an interest rate lag from the second quarter of 2020 to the fourth quarter of 2025, as
well as the corresponding Japanese data.!? It indicates that the Taylor-type rule exhibits
strong history dependence, with a coefficient p; = 0.842 on the interest rate lag.

We observe that the Taylor-type rule can not replicate inflation overshooting, even
though the zero interest rate policy continues throughout the simulation. The Taylor-
type rule, however, raises inflation gradually toward the end of the simulation and
achieves approximately the 2 percent target.!!

As discussed in Ikeda et al. (2022), cost-push pressures temporarily raise the inflation
rate after the pandemic. This suggests that inflation overshooting is caused by these
cost-push shocks, and the BOJ’s role is to patiently continue the zero interest rate policy
under high inflation rates. If there were no cost-push shocks, the BOJ would not be able
to achieve inflation overshooting. Thus, the inflation overshooting promised by the BOJ
is due to the presence of cost-push shock and not to the BOJ’s monetary policy.

This analysis indicates that the BOJ follows the conventional Taylor-type rule but
excludes responses to cost-push shocks. This is the implementation of the inflation-
overshooting commitment. Figure 2 shows a case where we apply cost-push shocks to

match the average inflation rate for 2021Q1-2022Q4 between the data and the model

9For example, Fujiwara et al. (2013) assume ¢, = 5, and Sugo and Ueda (2008) set p; = 0.842.

10We assume a —8.65 percent natural rate shock and a —0.86 percent cost-push shock at time zero
on a quarterly basis.

HHasui and Teranishi (2025) show a similar result using the Taylor-type rule without a policy rate

lag. We show this case in the Appendix.

11



simulation.!? The results show that the zero interest rate policy ends very early and the
output gap declines sharply, which is inconsistent with the data.

To evaluate the simulation results, we use the root mean squared error (RMSE). The
details of RMSE are in Appendix A. The results for our figures are shown in Table 2.
In Figure 1, RMSE, is 2.35 which is sufficiently large when compared to other cases, as
shown in the following sections. The total RMSE L is relatively small at 3.44 due to
good matches with the output gap and the policy interest rate. In Figure 2, the total
RMSE L is very large due to poor consistency with all the data.

We also show averages of variables for 2020QQ2-2024Q4 in simulations and data in
Table 3. The average inflation rate is —0.1 percent in the simulation under the Taylor-
type rule, whereas it is 1.72 percent in the data. The Taylor-type rule can not achieve

high inflation.

5.2 Price-level Targeting Rule

We assume the Price-level targeting rule as follows:
it = Inax [07 Z* + (bppt + (bmxt} ) (5)

where p; is the price level, and we define m — 7 = p; — p—1. We set ¢, and ¢, as
positive parameters. This price level is evaluated from an inflation deviation from the
steady state” to “The first difference of the price level reflects the deviation of inflation
from a non-zero inflation target 7. However, there remains an important feature of price
level targeting, which maintains the zero-interest rate policy until the initial price level
is recovered. This creates strong history dependence in a liquidity trap. We set ¢, = 1.5
and ¢, = 0.5.

We often discuss whether the Taylor rule is a guideline for monetary policy. The price-

level targeting rule is an alternative candidate to describe monetary policy, as Eggertsson

12We assume —4.14 percent of the natural rate shock and —0.98 percent of the cost-push shock at
time zero, along with an additional cost-push shock of 0.42 percent at time 6 (2021Q4) on a quarterly

basis.
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and Woodford (2003b) show that the price-level targeting rule can be a proxy for optimal
monetary policy with history dependence in a liquidity trap.

Figure 3 shows inflation rates, the output gap, and policy rates under the price-level
targeting rule.'®> We observe that inflation rates rise to more than 2 percent, and the zero
interest rate policy continues even after inflation rates sufficiently exceed 2 percent. This
is consistent with the BOJ’s inflation-overshooting commitment, which allows inflation
rates to stably exceed the 2 percent target. The model simulation closely replicates
inflation rates and the output gap.

When we include cost-push shocks to match the average inflation rate for 2021Q1-
2022Q4 between the data and the model simulation, as shown in Figure 4, the timing
to terminate the zero interest rate policy occurs earlier, and the model’s fit to inflation
rates, the output gap, and policy rates improves.!* This suggests that the cost-push
shocks, as well as the monetary policy commitment, are quantitatively important factors
in exiting from a liquidity trap.

In Figure 3, RMSE, is 1.41, which is much smaller than that in Figure 1, as shown
in Table 2. Thus, consistency with inflation rates improves significantly under the price-
level targeting rule. On the other hand, RMSE, is larger in Figure 3 than in Figure 1,
since the zero interest rate persists longer and the output gap increases in Figure 3. In
Figure 4, the total RMSE L improves to 3.31, which is better than under the Taylor rule,
as consistency with the output gap improves due to a shorter zero interest rate policy.

As shown in Table 3, the average inflation rate is 1.4 percent in the simulation under
the price-level targeting rule and 1.72 percent in the data. The average inflation rate
increases slightly to 1.53 percent with a cost-push shock. The price-level targeting rule

achieves high inflation rates to replicate the data.

13We assume —15.45 percent of the natural rate shock and —0.99 percent of the cost-push shock at
time zero on a quarterly basis.
14We assume a —14.33 percent natural rate shock and a —1.03 percent cost-push shock at time zero,

as well as an additional cost-push shock of 0.15 percent at time 6 on a quarterly basis.
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6 Evaluating Roles of Commitment and Shock

We assume a more flexible monetary policy rule to ensure that the model accurately
describes the data. In particular, we search for the best pairing of commitment degree
and shock size. This allows us to quantitatively evaluate the roles of monetary policy
commitment and cost-push shocks while improving the consistency of the output gap
and the nominal interest rate with the data.

We assume the following average inflation targeting rule:

it = max[(), . + gbfrﬁ-t + ¢xxt]a (6)

’ﬁ't = (71} — ﬁ) + (1 - w7r>7ATt_1.

Equation (6) nests three cases: when w, = 1, it corresponds to the Taylor rule; when
0 < w; < 1, it corresponds to the average inflation targeting rule; and when w, = 0, it
corresponds to the price-level targeting rule. As w, decreases, the power of commitment
increases.

To show the decomposition of the roles of monetary policy commitment and cost-
push shocks, we also search for the optimal size of a cost-push shock at time 6, as in
previous simulations where we introduce the cost-push shock at time 6 to match the
average inflation rate for 2021Q1-2022Q4 between the data and the model simulation.
We also match the initial sizes of cost-push and natural rate shocks to the data under
other search processes. Thus, we search over ¢ = [w, o, tt, '] " -

The consistency with the data is evaluated using the RMSE. The sample period is
2020Q2-2024Q4. The parameter search is conducted as follows:

min L (i) = w RMSEq(9) + w,RMSE, (9) + w;RMSE,(9) (7)

T
1
RMSE, (¥) = 7 Z [2(0) — zfatﬂ2, for z = m, x4,
0

t=

where 7 (1), 24(1), and i4() denote the model’s outputs for inflation, the output gap, and
the nominal interest rate, respectively. wdata  gpdata and jdata denote the corresponding

data for inflation, the output gap, and the nominal interest rate, respectively. The model
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time index t = 0, ..., T" corresponds to 2020Q2-2024Q4. The weights w,, w,, and w; are
set to unity, i.e., w, = w, = w; = 1. For parameters that are not estimated, all values are
set to those reported in Table 1, except for ¢, and ¢,. For ¢; and ¢,, we set ¢, = 2.07
and ¢, = 0.137 following Iiboshi et al. (2022).

Table 4 shows the estimates of . The table indicates that equation (6) with w, = 0.23
is much closer to the price-level targeting rule than to the Taylor-type rule. The estimate
of g is 0.08 percent quarterly, suggesting that only a small positive cost-push shock is
required, since we set pg = 0.42 for the Taylor-type rule in Figure 2 and pg = 0.15 for
the price-level targeting rule in Figure 4.

Figure 5 presents the simulation results under the estimated . The figure shows that
there is no overshooting of inflation beyond 2 percent, but the zero interest rate policy
continues even after inflation rates remain stably close to 2 percent for an extended
period. The match to inflation rates improves significantly when compared to the Taylor
rule case in Figures 1 and 2. Moreover, the consistency of the output gap with the data
also improves. The nominal interest rate departs from the zero lower bound earlier than
in the data. As shown in Table 2, a total RMSE L is 2.82, and this is one of the best
values across our simulations.

The simulation results imply that both commitment and the cost-push shock are

quantitatively important factors in increasing inflation and the output gap.

7 Sensitivity Analysis

7.1 Discounted Euler Equation

As shown in Del Negro et al. (2023), the impact of forward guidance is too powerful in
New Keynesian models. Some previous studies address this issue, known as the forward
guidance puzzle, in models that discount the responses to the output gap to inflation
expectations and real interest rates in the IS curve, as shown in McKay et al. (2017),

Nakata et al. (2019), and Gabaix (2020).
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Following McKay et al. (2017), we assume a discounted IS curve as follows:
Ty = 5Etxt+1 — CX (Zt — Et7Tt+1 — T?) . (8)

The discounted Euler equation differs from the IS curve since discounting parameters §
and ( are multiplied by the expected output gap and the real interest rate, respectively.
We set § = 0.97 and ¢ = 0.75 following McKay et al. (2017) and § = 0.856 following
Hirose et al. (2024). Other parameters are given in Table 1.

Figures 6a-c show the simulation results under the Taylor-type rule.'® Compared
with the results in Figure 1, both inflation rates and the output gap decrease. The zero
interest rate policy lasts longer than in Figure 1, since the effect of forward guidance is
weakened.

Figures 6d—f show the case under the Taylor-type rule when we include cost-push
shocks to match the average inflation rate for 2021Q1-2022Q4 between the data and the
model simulation.!® The simulation result is very poor at explaining the output gap
data.

Figures Ta-c show the simulation results under the price-level targeting rule.!” Com-
pared to the results in Figure 3, the overshooting of the output gap in period 0 is well
mitigated in Figure 7b. In addition, since the effect of forward guidance is weakened, the
zero interest rate policy lasts longer than in Figure 3, and the overshooting of inflation

occurs in later periods.

15We assume a —9.81 percent natural rate shock and a —0.82 percent cost-push shock at time zero,
on a quarterly basis, for the case of § = 0.97 and ¢ = 0.75. We can not converge the simulation for the
case of § = 0.856 and ¢ = 0.75.

16We assume a —8.76 percent the natural rate shock and a —0.99 percent the cost-push shock at time
zero, and an additional cost-push shock of 0.38 percent at time 6 on a quarterly basis for the case of
6 =0.97 and ¢ = 0.75. We assume a —11.63 percent natural rate shock and a —1.00 percent cost-push
shock at time zero, and an additional cost-push shock of 0.33 percent at time 6 on a quarterly basis for
the case of 6 = 0.856 and ¢ = 0.75.

1"We assume a —11.75 percent natural rate shock and a —0.88 percent cost-push shock at time zero
on a quarterly basis for the case of 6 = 0.97 and { = 0.75. We assume a —16.70 percent natural rate
shock and a —0.95 percent cost-push shock at time zero on a quarterly basis for the case of § = 0.856

and ¢ = 0.75.
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Figures 7d—f show the case under the price-level targeting rule when we include cost-
push shocks to match the average inflation rate for 2021Q1-2022Q4 between the data
and the model simulation.'® Compared to Figure 4, Figure 7e shows that the response
of the output gap improves sufficiently.

As shown in Table 2, RMSE, and the total RMSE L in Figure 7 are smaller than
those in Figures 3 and 4. Table 3 shows that the average of the output gap improves
to 1.91 (0.71) from 2.49 (1.25) in the data 0.21 without (with) the cost-push shock for
0 =097 and ( = 0.75. For § = 0.856 and ¢ = 0.75, the average of the output gap
sufficiently improves to 0.82 (0.37) without (with) the cost-push shock.

7.2 Two Percent Inflation Rate in the Steady-state

We change the inflation rate and the natural interest rate in the steady-state. Following
the BOJ’s official inflation target rate, we set the inflation rate in the steady-state, i.e.,
the target rate of inflation 7, at 2 percent, though this value is not supported by the
data, as shown in Osada and Nakazawa (2024) and Bank of Japan (2024). At the same
time, we set the natural interest rate in the steady-state at —1 percent, which is the
lowest estimate reported, as shown in Bank of Japan (2024). Then, the steady-state
nominal interest rate does not change and is given by 1 percent.

Figure 8 shows the case of the Taylor-type rule.'* We observe a similar result to that
shown in Figure 1. The Taylor-type rule can not generate inflation overshooting even
though the zero interest rate policy lasts longer. The Taylor-type rule, however, raises
inflation toward the end of the simulation and achieves the 2 percent target, which gives

the BOJ an opportunity to terminate the zero interest rate policy after a high inflation.

18We assume —13.61 percent of the natural rate shock and —1.00 percent of the cost-push shock at
time zero, and an additional cost-push shock of 0.20 percent at time 6 on a quarterly basis for the case
of 6 =0.97 and { = 0.75. We assume —16.27 percent of the natural rate shock and —1.02 percent of the
cost-push shock at time zero, and an additional cost-push shock of 0.18 percent at time 6 on a quarterly
basis for the case of § = 0.856 and ( = 0.75.

9We assume a —7.50 percent natural rate shock and a —0.85 percent cost-push shock at time zero

on a quarterly basis.
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Figure 9 shows the case of the price-level targeting policy.? We observe that inflation
exceed 2 percent, and the zero interest remains stably above 2 percent, as shown in
Figure 3.

In an alternative calibration, the natural interest rate in the steady-state is set at
—0.5 percent, the baseline calibration in Table 1. The steady-state of the nominal interest
rate is then set to 1.5 percent, and the inflation target remains at 2 percent. Figure 10
shows the case of the Taylor-type rule. Compared to the results in Figure 8, inflation
approaches 2 percent earlier but does not result in significant overshooting, and the zero
interest rate policy ends earlier. Figure 11 shows the case of the price-level targeting
policy.?! Compared to the results in Figure 9, the zero interest rate policy ends earlier
but continues even after inflation remains stably above 2 percent.

These results suggest that even when the inflation target is set at 2 percent, the

findings presented in Sections 5.1 and 5.2 remain unchanged.

7.3 Augmented Taylor-type Rule

The analysis of the price-level targeting rule demonstrated that a rule with strong his-
tory dependence can generate inflation overshooting and earlier termination of the zero
interest rate policy with a small cost-push shock.

In this section, we conduct a simulation under the augmented Taylor-type rule with

strong history dependence, as proposed by Reifschneider and Williams (2000), as follows:
iy = max [0,% — ¢,z ,
iw= (1= p) {i" + oM — T) + G} + pili—1, (9)
ze =21+ (s — i),

where 7; denotes the nominal shadow rate and z; denotes the cumulative past deviation of

the nominal interest rate from the nominal shadow rate. The monetary policy rule, which

20We assume a —15.6 percent natural rate shock and a —1.01 percent cost-push shock at time zero
on a quarterly basis.
2lWe assume a —17.57 percent natural rate shock and a —1.03 percent cost-push shock at time zero

on a quarterly basis.
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is proposed by Reifschneider and Williams (2000), is used to compare its performance
with the optimal commitment policy as in Nakov (2008).22 We set ¢, to 0.5 following
Nakov (2008) and set ¢, to 0, with other parameters as given in Table 1.

Figures 12a—c show inflation rates, the output gap, and policy rates under the aug-
mented Taylor rule from the second quarter of 2020 to the fourth quarter of 2025, as well
as these Japanese data.?® Unlike the previous simulation results based on the Taylor-
type rule, we observe that inflation exceeds 2 percent, and the zero interest rate policy
persists even after inflation remains stably above 2 percent. Interestingly, this result is
highly similar to the simulation results of the price-level targeting rule in Figure 3.

Figures 12d—f show the result when we include cost-push shocks to match the average
inflation rate for 2021Q1-2022Q4 between the data and the model simulation. This result
is also highly similar to the simulation results of the price-level targeting rule in Figure 4:
The zero interest rate policy is terminated earlier, and the model’s fit to inflation, the
output gap, and policy rates improves.?*

As Nakov (2008) mentions, the augmented Taylor-type rule has influenced US mon-
etary policy from 2003 to 2005. Figure 12 suggests that a monetary policy rule that
incorporates cumulative past information on the interest rate can be important in ex-
plaining Japan’s macroeconomic behavior in the post-pandemic period. Together with
the result in Section 5.2, we can conclude that a monetary policy with a prolonged zero
interest rate policy replicates inflation overshooting and escapes a liquidity trap. This
implies that the BOJ can achieve these outcomes by implementing a prolonged zero

interest rate policy.

%2Nakata and Tanaka (2016) use Reifschneider and Williams (2000)’s monetary policy rule to analyze
the effects of forward guidance.

23We assume a —14.85 percent natural rate shock and a —0.98 percent cost-push shock at time zero
on a quarterly basis.

24We assume a —13.50 percent natural rate shock and a —1.03 percent cost-push shock at time zero,

and an additional cost-push shock of 0.18 percent at time 6 on a quarterly basis.
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7.4 Low Elasticity of Demand to the Real Interest Rate

In this section, we assume a low intertemporal elasticity of substitution of expenditure,
i.e., a low elasticity of the output gap to the real interest rate. Weak demand is one
reason for the prolonged low growth in Japan. Following the estimate by Cashin and
Unayama (2016), we set xy = 0.21 for the simulation.?®

Figures 13a-—c show the simulation results under the Taylor-type rule.?® We observe
a similar result to that shown in Figure 1. The Taylor-type rule can not replicate
inflation overshooting even though the zero interest rate policy continues long enough.
Figures 13d—f show the case in which we apply cost-push shocks to match the average
inflation rate for 2021Q1-2022Q4 between the data and the model simulation.?” The
result contradicts the data, as shown in Figure 2. The zero interest rate policy ends at
a very early stage, and the output gap decreases significantly.

Figures 14a—c show the results under the price-level targeting rule.?® As in Figure 3,
we observe that inflation exceeds 2 percent, and the zero interest rate policy continues for
a prolonged period. The model’s fit to inflation, the output gap, and the nominal interest
rate improves compared to Figure 3. Figures 14d—f show the case under the price-level
targeting rule in which we include cost-push shocks to match the average inflation rate
for 2021Q1-2022Q4 between the data and the model simulation.?? We observe that the
zero interest rate policy is terminated earlier compared to the case with no cost-push
shock.

As shown in Table 2, the total RMES L is the lowest at 2.26 among the simulations

25For parameters other than y, we use the values shown in Table 1.

26We assume a —28.30 percent natural rate shock and a —0.82 percent cost-push shock at time zero
on a quarterly basis.

2TWe assume a —23.50 percent natural rate shock and a —0.96 percent cost-push shock at time zero,
along with an additional cost-push shock of 0.38 percent at time 6 on a quarterly basis.

28We assume a —28.3 percent natural rate shock and a —0.82 percent cost-push shock at time zero,
on a quarterly basis.

29We assume a —34.11 percent natural rate shock and a —0.99 percent cost-push shock at time zero,

and an additional cost-push shock of 0.20 percent at time 6 on a quarterly basis.
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in Figures 14d-f, indicating that the model describes the data well. Table 3 shows that
the average output gap (inflation) in Figures 14d—f is 0.13 (1.5) relative to the data value
of 0.21 (1.72).

7.5 Inflation Persistence

In this section, we analyze how the simulation results change with different degrees of
inflation persistence, such as v set to 0 (purely forward-looking), 0.358 (Hirose, 2020),
0.631 (Hirose and Kurozumi, 2012), and 0.862 (Sugo and Ueda, 2008).3° For these
simulations, we replace m; with m, —7 in the Phillips curve (2), where 7 is an exogenously
given anchored inflation rate and m; = 7 in the steady-state.

Figures 15a—c show the results under the Taylor-type rule.?® We observe that the
rise in the inflation rate occurs later, and that the zero interest rate policy lasts longer
as v becomes larger. This indicates that higher inflation persistence leads to a longer
period of deflation, requiring a longer zero interest rate policy under the Taylor-type
rule. However, in all cases of 7, there is no overshooting of inflation above 2 percent,
and the zero interest rate policy ends earlier in the simulations than in the data.

Figures 15d—f show the case in which we give cost-push shocks to match the average
inflation rate for 2021Q1-2022Q4 between the data and the model simulation.??> We
observe that, as v becomes larger, it takes longer for inflation to exceed 2 percent, even
in the presence of a positive cost-push shock. Therefore, the zero interest rate policy
lasts longer as v increases. However, similar to the result in Figure 2, the zero interest
rate policy ends much earlier in the simulation than in the data, indicating that the

simulation result contradicts the data.

30For parameters other than v, we use the values shown in Table 1.

31'We assume —10.99, —11.11, —10.92, and —10.20 percent natural rate shocks and —1.06, —0.97,
—0.91, and —0.87 percent cost-push shocks at time zero on a quarterly basis for the cases of v = 0,
0.358, 0.631, and 0.862, respectively.

32We assume —5.05, —6.92, —7.18, and —5.85 percent natural rate shocks, —1.30, —1.10, —1.01, and
—0.97 percent cost-push shocks at time zero, and 0.42, 0.27, 0.24, and 0.31 percent of the additional

cost-push shocks at time 6 on a quarterly basis for the cases of v = 0, 0.358, 0.631, and 0.862, respectively.

21



Figures 16a—c show the results under the price-level targeting rule.® We observe
overshooting of inflation above 2 percent for all values of v. When ~ is lower, inflation
overshooting occurs earlier. As « increases, greater inflation overshooting occurs later.
The zero interest rate policy lasts longer as « increases, but for all values of 7, the
simulation results for the nominal interest rate closely resemble the data.

Figures 16d—f show the case in which we apply cost-push shocks to match the average
inflation rate for 2021Q1-2022Q4 between the data and the model simulation.®* We
observe that the simulation results for v = 0.862 are consistent with the data, even when
including a positive cost-push shock.?> While v = 0.358, the zero interest rate policy
ends earlier than in the data, and the simulation results for the output gap and inflation
are more consistent with the data compared to the Taylor-type rule results shown in

Figures 12d-f.

8 Concluding Remarks

We use the New Keynesian model and simple monetary policy rules to evaluate whether
an inflation-overshooting commitment can raise inflation above 2 percent to end the zero
interest rate policy, or whether cost-push shocks lead to high inflation rates in the BOJ’s
exit policy from a liquidity trap in 2024-2025.

Our analyses reveal a monetary policy commitment effect that achieves high inflation
and a high output gap. The monetary policy commitment, in addition to cost-push
shocks, contributes to the exit from a liquidity trap. We also show that the BOJ does

not respond to positive cost-push shocks when implementing the exit from the zero

33We assume —15.62, —15.62, —15.55, and —15.44 percent natural rate shocks and —1.20, —1.11,
—1.04, and —1.00 percent cost-push shocks at time zero on a quarterly basis for the cases of v = 0,
0.358, 0.631, and 0.862, respectively.

34We assume —13.88 and —15.14 percent natural rate shocks, —1.14 and —1.01 percent cost-push
shocks at time zero, and 0.13 and 0.04 percent of the additional cost-push shocks at time 6 on a
quarterly basis for the cases of 0.358 and 0.862, respectively.

35Due to the simulation’s technical constraints, we present only the cases of v = 0.358 and v = 0.862.
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interest rate policy. The BOJ mainteined the zero interest rate policy under high inflation
until March 2024. These two successful actions changed our inflationary expectations
and actual inflation. This is the BOJ’s implementation of an inflation-overshooting

commitment.

23



References

BANK OF JAPAN (2013): “Introduction of the “Quantitative and Qualitative Monetary

Easing”,” April, The Bank of Japan.

(2016): “New Framework for Strengthening Monetary Easing: Quantitative and
Qualitative Monetary Easing with Yield Curve Control,” September, The Bank of

Japan.

(2021): “Assessment for Further Effective and Sustainable Monetary Easing,”
March, The Bank of Japan.

— (2022): “Outlook for Economic Activity and Prices,” January, The Bank of

Japan.

(2024): “Outlook for Economic Activity and Prices,” April, The Bank of Japan.

— (2025): “Outlook for Economic Activity and Prices,” January, The Bank of

Japan.

BupianTo, F., T. NAKATA, AND S. SCHMIDT (2023): “Average inflation targeting

and the interest rate lower bound,” Furopean Economic Review, 152, None.

CAsHIN, D. AND T. UNAYAMA (2016): “Measuring intertemporal substitution in con-

Y

sumption: evidence from a VAT increase in Japan,” The Review of FEconomics and

Statistics, 98, 285—-297.

CHRISTIANO, L. J., M. EICHENBAUM, AND C. L. EvANs (2005): “Nominal rigidities

and the dynamic effects of a shock to monetary policy,” Journal of Political Economy,

113, 1-45.

CLARIDA, R., J. GALI, AND M. GERTLER (1999): “The science of monetary policy: a

new Keynesian perspective,” Journal of Economic Literature, 37, 1661-1707.

DEL NEGRO, M., M. P. GIANNONI, AND C. PATTERSON (2023): “The forward guid-

ance puzzle,” Journal of Political Economy Macroeconomics, 1, 43-79.

24



EGGERTSSON, G. B. AND M. WOODFORD (2003a): “Optimal Monetary Policy in a

Liquidity Trap,” Working Paper 9968, National Bureau of Economic Research.

(2003b): “Zero bound on interest rates and optimal monetary policy,” Brookings

Papers on Economic Activity, 34, 139-233.

(2006): “Optimal monetary and fiscal policy in a liquidity trap,” in NBER Inter-
national Seminar on Macroeconomics 2004, National Bureau of Economic Research,

Inc, NBER Chapters, 75-144.

Fusiwara, 1., T. NAKAJIMA, N. SUDO, AND Y. TERANISHI (2013): “Global liquidity

trap,” Journal of Monetary Economics, 60, 936-949.

GABAIX, X. (2020): “A behavioral new Keynesian model,” American Economic Review,

110, 2271-2327.

Hasur, K. AND Y. TERANISHI (2025): “Optimal monetary policy in a liquidity trap:
Evaluations for Japan’s monetary policy,” Journal of the Japanese and International

Economies, 76, 101361.

HIROSE, Y. (2020): “An estimated DSGE model with a deflation steady state,” Macroe-

conomic Dynamics, 24, 1151-1185.

HIROSE, Y., H. [i1BOSHI, M. SHINTANI, AND K. UEDA (2024): “Estimating a behav-

ioral new Keynesian model with the zero lower bound,” Journal of Money, Credit and

Banking, 56, 2185-2197.

HIrROSE, Y. AND T. KurozuMi (2012): “Do investment-specific technological changes

matter for business fluctuations? Evidence from Japan,” Pacific Economic Review,

17, 208-230.

liBosHI, H., M. SHINTANI, AND K. UEDA (2022): “Estimating a nonlinear new Key-
nesian model with the zero lower bound for Japan,” Journal of Money, Credit and

Banking, 54, 1637-1671.

25



IkeEDA, S., H. INaTSUGU, Y. KisHAaBA, T. KoNDO, K. SAKURA, K. TAKATOMI,
T. NakazawA, AND K. YAMADA (2022): “Inflation in Japan: Changes during the
Pandemic and Issues for the Future,” Bank of Japan Working Paper Series 22-E-18,
Bank of Japan.

Juna, T., Y. TERANISHI, AND T. WATANABE (2001): “Zero bound on nominal interest
rates and optimal monetary policy,” KIER Discussion Paper 525, Kyoto University,

Institute of Economic Research.

(2005): “Optimal monetary policy at the zero-interest-rate bound,” Journal of
Money, Credit, and Banking, 37, 813-835.

Kawamorto, T., J. NAKAJIMA, AND T. MikaMI (2025): “Inflation-overshooting com-

mitment: an analysis using a macroeconomic model,” Ozford FEconomic Papers, 77,

213-233.

Kawamoro, T., T. NAKAZAWA, Y. KisHABA, K. MATSUMURA, AND J. NAKAJIMA
(2023): “Estimating the macroeconomic effects of Japan’s expansionary monetary pol-
icy under Quantitative and Qualitative Monetary Easing during 2013-2020,” Economic
Analysis and Policy, 78, 208-224.

McKAy, A., E. NAKAMURA, AND J. STEINSSON (2017): “The discounted Euler equa-~

tion: a note,” Economica, 84, 820-831.

MukovyAMA, T., M. SHINTANI, AND K. TERAMOTO (2021): “Cyclical part-time em-

7

ployment in an estimated new Keynesian model with search frictions,” Journal of

Money, Credit and Banking, 53, 1929-1968.

NakAaTA, T., R. OGAKI, S. SCHMIDT, AND P. Y00 (2019): “Attenuating the forward
guidance puzzle: implications for optimal monetary policy,” Journal of Economic

Dynamics and Control, 105, 90-106.

NAKATA, T. AND S. SCHMIDT (2019): “Gradualism and liquidity traps,” Review of

Economic Dynamics, 31, 182-199.

26



NAKATA, T. AND H. TANAKA (2016): “Equilibrium Yield Curves and the Interest
Rate Lower Bound,” Finance and Economics Discussion Series 2016-085, Board of

Governors of the Federal Reserve System.

Nakov, A. (2008): “Optimal and simple monetary policy rules with zero floor on the

nominal interest rate,” International Journal of Central Banking, 4, 73—127.

OsADA, M. AND T. NAKAZAWA (2024): “Assessing Measures of Inflation Expectations:

A Term Structure and Forecasting Power Perspective,” Bank of Japan Review Series

24-E-4, Bank of Japan.

REIFSCHNEIDER, D. AND J. C. WILLIAMS (2000): “Three lessons for monetary policy

in a low-inflation era,” Journal of Money, Credit and Banking, 32, 936-966.

SMETS, F. AND R. WOUTERS (2007): “Shocks and frictions in US business cycles: A

Bayesian DSGE approach,” American Economic Review, 97, 586-606.

Suco, T. AND K. UEDA (2008): “Estimating a dynamic stochastic general equilibrium

model for Japan,” Journal of the Japanese and International Economies, 22, 476-502.

UEDA, K. (2023): “Basic Thinking on Monetary Policy and the Outlook for Economic
Activity and Prices,” Speech at a Meeting Held by the Naigai Josei Chosa Kai (Re-

search Institute of Japan), The Bank of Japan.

WOODFORD, M. (2003): Interest and Prices: Foundation of a theory of monetary policy,

Princeton University Press.

(2004): “Inflation targeting and optimal monetary policy,” Review, 86, 15-42,
Federal Reserve Bank of St. Louis.

27



Table 1: Calibration for Japan

Parameters Values Explanation

15} 0.9975 Discount Factor

X 0.646  Intertemporal Elasticity of Substitution of Expenditure
w 2.149  Elasticity of Firm’s Real Marginal Cost

o 6 Elasticity of Substitution across Goods

K 0.0048 Elasticity of Inflation to Output Gap

! 0.875  Price Stickiness

0 1 Degree of Inflation Persistence

O ) Coefficient of Inflation in Taylor Rule

Pi 0.842  Coefficient of Interest rate Lag in Taylor Rule

o 0.5 Coefficient of the Output Gap in Price-level Rule
op 1.5 Coefficient of Price in Price-level Rule

P 1 Steady-state Nominal Interest Rate (Annual)
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Table 2: Comparison of RMSE

Figure: policy rule L RMSE, RMSE, RMSE;
Fig. 1: TR 3.44 2.35 1.05 0.04
Fig. 2: TR x 7.39 1.74 3.15 2.50
Fig. 3: PLTR 4.15 1.41 2.66 0.07
Fig. 4: PLTR x 3.31 1.48 1.68 0.15
Fig. 5: AITR =« 2.81 1.73 0.80 0.28
Fig. 6: Dis. IS TR, 6 =0.97, ¢ =0.75 4.08 2.82 1.19 0.07
Dis. IS TR, § = 0.97, ¢ = 0.75 6.62 1.70 2.36 2.57
Dis. IS TR, 6 = 0.856, ¢ = 0.75 x 5.89 1.66 1.59 2.64
Fig. 7: Dis. IS PLTR, § =0.97, ( =0.75 3.51 1.50 1.94 0.07
Dis. ISPLTR, 6 =0.97,( =0.75 % | 2.67 1.49 1.04 0.14
Dis. IS PLTR, § = 0.856, ¢ = 0.75 3.23 1.84 1.32 0.07
Dis. IS PLTR, 6 = 0.856, ( = 0.75 % | 2.53 1.48 0.78 0.26
Fig. 8: TR, 7 =2 3.49 2.24 1.19 0.07
Fig. 9: PLTR, 7 =2 4.41 1.41 2.92 0.07
Fig. 10: TR, 7 =2, r* = —0.5 3.36 1.89 1.28 0.19
Fig. 11: PLTR, 7 =2, r* = —0.5 4.82 1.41 3.34 0.06
Fig. 12: ATR 4.00 1.45 2.47 0.07
ATR « 3.16 1.53 1.37 0.26
Fig. 13: TR, x =0.21 3.54 2.62 0.85 0.07
TR, x =0.21 5.99 1.69 1.69 2.61
Fig. 14: PLTR x =0.21 2.56 1.51 0.98 0.07
PLTR x = 0.21 = 2.26 1.50 0.67 0.10
Fig. 15: TR, v=0 3.46 1.91 0.76 0.79
TR, v = 0.358 3.22 1.82 0.69 0.71
TR, v = 0.631 2.97 1.74 0.63 0.60
TR, v = 0.862 2.87 1.83 0.72 0.32
TR, v =0 * 7.69 2.31 2.83 2.56
TR, v = 0.358 % 6.31 2.11 2.17 2.02
TR, v = 0.631 5.79 1.95 1.99 1.86
TR, v = 0.862 * 6.36 1.81 2.44 2.12
Fig. 16: PLTR, v=0 3.57 1.98 1.50 0.09
PLTR, v = 0.358 3.57 1.89 1.61 0.07
PLTR, v = 0.631 3.57 1.74 1.79 0.05
PLTR, v = 0.862 3.71 1.48 2.15 0.07
PLTR, v = 0.358 * 3.36 2.04 0.85 0.47
PLTR, v = 0.862 x 3.49 1.53 1.91 0.05

Note: L =), RSME, for z = m,z,i. TR, PLTR, AITR, and ATR denotes Taylor-type rule, price-level
targeting rule, average inflation targeting rule, and augmented Taylor rule, respectively. 7 and r* denote
anchored inflation rate and natural rate at the steady-state, respectively. Asterisk “x” denotes the case

with positive cost-push shocks.
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Table 3: Comparison of Average

Average for 2020Q2-2024Q4

Figure: policy rule ™ T 7
Data 1.72 0.21 0.00
Fig. 1: TR —0.10 0.63 0.02
Fig. 2: TR « 1.22 —2.53 2.03
Fig. 3: PLTR 1.40 2.49 0.00
Fig. 4: PLTR x 1.53 1.25 0.08
Fig. 5: AITR =« 0.81 0.54 0.16
Fig. 6: Dis. IS TR, 6 =0.97, ¢ =0.75 —0.62 0.03 0.00
Dis. ISTR, 6 =0.97, ¢ = 0.75 1.26 —1.87 2.11
Dis. IS TR, § = 0.856, ¢ = 0.75 * 1.30 -1.19 2.17
Fig. 7: Dis. IS PLTR, § =0.97, ( = 0.75 1.22 1.91 0.00
Dis. IS PLTR, § = 0.97, ( = 0.75 1.53 0.71 0.07
Dis. IS PLTR, § = 0.856, ¢ = 0.75 0.73 0.82 0.00
Dis. IS PLTR, § = 0.856, ¢ = 0.75 1.53 0.37 0.12
Fig. 8: TR, 71 =2 0.06 0.53 0.00
Fig. 9: PLTR, 7 =2 1.87 2.75 0.00
Fig. 10: TR, # =2, r* = —-0.5 0.49 1.17 0.12
Fig. 11: PLTR, 7 =2, r* = —-0.5 1.94 3.00 0.00
Fig. 12: ATR 1.26 2.33 0.00
ATR 1.45 0.79 0.10
Fig. 13: TR, x =0.21 —0.40 0.03 0.00
TR, x =0.21 1.26 —1.20 2.14
Fig. 14: PLTR x =0.21 1.18 0.88 0.00
PLTR x = 0.21 « 1.50 0.13 0.04
Fig. 15: TR, v=0 1.29 —0.16 0.75
TR, v = 0.358 1.19 —0.06 0.62
TR, v = 0.631 1.00 0.09 0.47
TR, v = 0.862 0.57 0.39 0.21
TR, v =0 * 1.61 —1.98 2.26
TR, v = 0.358 1.46 —1.48 1.74
TR, v = 0.631 1.33 —1.38 1.56
TR, v = 0.862 1.24 —-1.84 1.74
Fig. 16: PLTR, v =0 1.50 1.36 0.07
PLTR, v = 0.358 1.50 1.45 0.05
PLTR, v = 0.631 1.50 1.59 0.03
PLTR, v = 0.862 1.49 1.93 0.00
PLTR, v = 0.358 * 1.50 0.46 0.34
PLTR, v = 0.862 % 1.50 1.63 0.01

Note: TR, PLTR, AITR, and ATR denotes Taylor-type rule, price-level targeting rule, average inflation
targeting rule, and augmented Taylor rule, respectively. 7 and r* denote anchored inflation rate and
natural rate at the steady-state, respectively. Asterisk “x” denotes the case with positive cost-push

shocks.
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Table 4: Estimated values for wy, po, pe, and 7y

n
Parameters Wy Lo 46 o

Estimated values | 0.23 —-0.74 0.08 —11.21
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Figure 1: Taylor-type Rule
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Figure 2: Taylor-type Rule with Cost-push Shock
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Figure 4: Price-level Targeting Rule with Cost-push Shock
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Figure 5: Average Inflation Targeting Rule when w, = 0.23 and pug = 0.08.
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Figure 6: Taylor-type Rule: Discounted FEuler Equation
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Figure 7: Price-level Targeting Rule: Discounted Euler Equation
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Figure 8: Taylor-type Rule under 2 Percent Target
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Figure 9: Price-level Targeting Rule under 2 Percent Target
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Figure 10: Taylor-type Rule under 2 Percent Target, —0.5 Percent Natural Rate, and

1.5 Percent Nominal Interest Rate
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Figure 11: Price-level Targeting Rule under 2 Percent Target, —0.5 Percent Natural

Rate, and 1.5 Percent Nominal Interest Rate
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Figure 12: Augmented Taylor Rule
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Figure 13: Taylor-type Rule: Low Elasticity of Demand to the Real Interest Rate
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Figure 14: Price-level Targeting Rule: Low Elasticity of Demand to the Real Interest
Rate
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Figure 15: Taylor-type Rule: Inflation Persistence

46



Percent Change (Annual) (a) Inflation

Zero inflation

o
— 0

o ‘i —=0358

27 Y —y=0.631

2 V —_—=0.862

a0t
01 2 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22

2020Q2 202403
Percent (b) Output Gap
6

Zero output gap
4 4
6 4
e e A s e e e e e LA s s s s
0123456 7 8 910111213 14 15 16 17 18 19 20 21 22
2020Q2 2024Q3

Percent (Annual) (c) Nominal Interest Rate

4
3.5 4
34
2.5 4

7
2 percent

1.5 P

14

0.5 +

04
Zerorate

45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22
2024Q3

05 +——
012 3
2020Q2

Percent Change (Annual) (d) Inflation

6
5 . a
4 \
34 4 /' 2 percent
2 inflation target
14
Zero inflation
07 1
PR \ | —y=0.358
) \ —y=0.862
“7 1 = =Data
3 4 \
B L A e e e L e e e e e e LA s s
0123 456 7 8 9 10111213 14 15 16 17 18 19 20 21 22
2020Q2 2024Q3
Percent (e) Output Gap
6
44
2 4
04 —ff -
Zero output gap =
24
4
6
e e e A e e e e e AN B B s e
0123 456 7 8 9 10111213 14 15 16 17 18 19 20 21 22
2020Q2 2024Q3
Percent (Annual) (f) Nominal Interest Rate
4
3.5 o
3
25
7
2 percent
151 “P
14
0.5 4
o =
Zero rate
S5 +—"""""—7 7777
0123 456 7 8 9 10111213 14 15 16 17 18 19 20 21 22
2020Q2 2024Q3

Figure 16: Price-level Targeting Rule: Inflation Persistence
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Appendix

A Assessment of the Model’s Consistency with Data

We assess the simulation results using the root mean squared error (RMSE) as follows.

T
RMSE, = %Z 2 — Zgataﬁ for z = m. 2.1,
t=0

where z; denotes simulation results and 22 denotes the data. The time indext = 0,...,T

corresponds to 2020Q2-2024Q4. We define L as the sum of RMSE,.
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