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Abstract. This paper proposes a Hausman-type statistic to the test specification of a parametric

binary choice model by comparing the maximum likelihood estimator and the maximum score

estimator. Although the convergence rates are different, it is still meaningful to compare these

estimators to detect misspecification of parametric models. A simulation study illustrates that the

proposed test offers better size properties than the conventional information matrix test, and exhibits

reasonable power against common forms of misspecification, such as heavy-tailed distributions and

heteroskedasticity.

1. Hausman type test

This paper is concerned with specification testing of parametric binary choice models, such as
probit and logit, which are commonly applied in empirical research. Suppose we observe a random
sample {Yi, Xi}ni=1 of (Y,X), where Y ∈ {0, 1} is a binary dependent variable and X ∈ Rk is a
vector of covariates. The binary choice model of interest is

Y = I{1 +X ′β + U ≥ 0}, (1)

where I{·} is the indicator function, β is a k-dimensional vector of parameters, and U is an unobserv-
able error term. We normalize the intercept to be 1, but other normalizations can be also applied.
To estimate the parameters β, researchers commonly employ a parametric model on the error term,
such as the homoskedastic probit (U |X ∼ N(0, η)) and homoskedastic logit (U |X ∼ Logistic(0, η)),
and implement the method of maximum likelihood. It is known that although the maximum likeli-
hood estimator is consistent and asymptotically optimal when the parametric distributional form of
U |X is correctly specified, it is generally inconsistent for β when the parametric model is misspeci-
fied (White, 1982). For example, the probit maximum likelihood estimator using U |X ∼ N(0, η) is
generally inconsistent under not only non-normal errors but also heteroskedastic errors. Since the
probit and logit methods are widely applied in empirical research, it is of substantial interest to
check the validity of specified parametric models.

In this paper, we maintain the conditionally zero median assumption on the error term:

Med(U |X) = 0, (2)
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and consider specification testing of a parametric model

H0 : U |X ∼ Fη(·|X),

where Fη(·|X) is the conditional distribution satisfying (2) with parameters η. Obviously the probit
or logit satisfies (2). The alternative hypothesis is H1 : H0 is not true (but (2) holds true). Under
certain regularity conditions, the maximum likelihood estimator β̂ML satisfies

n1/2(β̂ML − β)
d→ N(0, VML) under H0,

n1/2(β̂ML − β∗)
d→ N(0, V ∗

ML) under H1, (3)

where β∗ is the probability limit of β̂ML under H1 (called the pseudo-true value), and VML and V ∗
ML

are asymptotic variances. Under H1, β∗ is generally different from β in (1) (see, White, 1982).
The main idea of this paper is to compare the maximum likelihood estimator β̂ML against a

semiparametric estimator that is consistent for β under the median restriction in (2) without any
parametric restriction on the distribution form of the error term. To this end, we employ the
maximum score estimator (Manski, 1975), that is

β̂MS = argmax
β

n∑
i=1

[
YiI{1 +X ′

iβ ≥ 0}+ (1− Yi)I{1 +X ′
iβ < 0}

]
.

Under (2) and mild regularity conditions, β̂MS is consistent for β and exhibits the so-called cube
root asymptotics (Kim and Pollard, 1990):

n1/3(β̂MS − β)
d→ Z, (4)

where Z is the minimizer of a Gaussian process; see Kim and Pollard (1990, Theorem 1.1) for
the definition. It should be note that β̂MS is consistent for β regardless of H0 or H1, but converges
slower than β̂ML. We argue that although the convergence rates are different, it is still meaningful to
compare these estimators to detect misspecification of parametric models. In particular, we propose
the following Hausman type statistic:

T = ||n1/3(β̂MS − β̂ML)||.

One attractive feature of this statistic is that it does not require any tuning constants, such as
bandwidth or series length. Note that under H0, (3) and (4) imply

T = ||n1/3(β̂MS − β)− n−1/6{n1/2(β̂ML − β)}|| d→ ||Z||.

On the other hand, under H1, it can be written as

T = ||n1/3(β̂MS − β) + n1/3(β − β∗)− n−1/6{n1/2(β̂ML − β)}||,

and thus T diverges as far as β∗ ̸= β. Therefore, the main result of this paper is summarized as
follows.
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Proposition. Consider the setup of this section. Suppose (3) and (4) hold true. Let c1−α be the
(1− α)-th quantile of ||Z||. Then P{T ≤ c1−α} → 1− α under H0, and T diverges to infinity under
H1 as far as β∗ ̸= β.

Since Z is the limiting distribution of the maximum score estimator, several methods are available
to compute the critical value c1−α, such as the subsampling (by Delgado, Rodríguez-Poo and Wolf,
2001) and bootstrap (Cattaneo, Jansson and Nagasawa, 2020). In our simulation study, we illustrate
by the conventional subsampling method to estimate c1−α and briefly mention the results for the
bootstrap method.

Remark. [Comparison with information matrix test] A standard specification test in the maximum
likelihood framework is the information matrix test (IMT) proposed by White (1982), which effec-
tively tests the null hypothesis of the information matrix equality HIM

0 : E
[
∂ℓ(Y |X;θ)

∂θ
∂ℓ(Y |X;θ)

∂θ′

]
=

−E
[
∂2ℓ(Y |X;θ)

∂θ∂θ′

]
for the conditional log-likelihood function ℓ(Y |X; θ) of the parameters θ = (β′, η′)′.

In terms of local power, the IMT dominates our test, since the IMT can have non-trivial power
against the Pitman-type local alternatives at the rate n−1/2 (instead of n−1/3); see Newey (1985).
However, despite its theoretical appeal, the IMT has seen limited application in practice (Golden et
al. 2012). White’s original (full) IMT is analytically and computationally burdensome due to the
requirement for third derivatives. Simulation evidence further suggests that both the full IMT and
the outer product of gradients (OPG)-based implementation that avoids explicit third derivatives,
following Chesher (1983) and Lancaster (1984), can exhibit erratic finite-sample behavior, and size
distortions tend to worsen as the degrees of freedom increase (Taylor 1987; Orme 1990; Davidson and
MacKinnon 1992; Stomberg and White 2000). These concerns have motivated continued method-
ological developments aimed at improving the practical performance of IMT-based tests (Golden et
al. 2016).

In our simulation study focusing on the probit model presented below, we also find severe size
distortions even in the case of dim(θ) = 3 and low size-adjusted power (due to the adjustment
required for the substantial over-rejection), whereas our proposed method effectively avoids such
over-size. Therefore, at least, our test can serve as a useful complement to the IMT.

2. Simulation

We conduct a simulation study to evaluate the finite sample performance of our proposed test.
We focus on the probit model as a representative case and assess its empirical size and power against
several common forms of misspecification. The data generating process for our simulation is based on
the latent variable model Yi = I{1 + β1X1,i + β2X2,i + Ui ≥ 0} with the true parameters (β1, β2) =

(1, 1) and the sample sizes n ∈ {300, 500, 1000, 2000, 5000}. For k = 1, 2, the covariate Xk,i is
independently generated from one of the following distributions: the symmetric N(0, 1) or N(0.5, 1),
or the asymmetric Gumbel(0, 1) or Gumbel(0.5, 1). The cases with mean 0.5 create settings with
greater data imbalance where the proportion of Yi = 1 is higher. We consider four specifications for
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the error term Ui: (i) the null distribution with Ui ∼ N(0, 1) (correct specification), (ii) an alternative
with Ui ∼ Logistic(0, 1) (distributional misspecification), (iii) an alternative with Ui ∼ Cauchy(0, 1)

(heavy-tailed misspecification), and (iv) an alternative with Ui = ϵi
√
1 + (X1,i +X2,i)2 and ϵi ∼

N(0, 1) (heteroskedasticity). The nominal significance level is α = 0.05. For each case, the results
are based on 1, 000 Monte Carlo replications.

First, we evaluate the size under the correct specification (Ui ∼ N(0, 1)). To implement the
maximum score estimator, we employ a grid search. The critical values are estimated via subsampling
with a block size set to 30% of the original sample size, following Delgado, Rodríguez-Poo and Wolf
(2001). We also confirmed that the results are robust to alternative block sizes of 20% and 40%. We
compare our test with the IMT using a commonly used OPG-based implementation (Chesher 1983;
Lancaster 1984).

Table 1 reports the size properties of both tests The results show that the IMT is noticeably
oversized. Although this distortion is mitigated as the sample size increases, the size remains above
the 5% nominal level even at n = 5000. Furthermore, this tendency toward over-rejection becomes
more pronounced with greater data imbalance. 1 In contrast, our proposed method consistently
exhibits an empirical size below 0.05 across all settings, suggesting that our method is more suitable
for practical applications.

n IMT (OPG-based) Maximum Score
N(0, 1) N(0.5, 1) G(0, 1) G(0.5, 1) N(0, 1) N(0.5, 1) G(0, 1) G(0.5, 1)

300 0.531 0.669 0.644 0.864 0.016 0.011 0.009 0.007
500 0.396 0.528 0.556 0.778 0.003 0.005 0.005 0.007
1000 0.262 0.364 0.410 0.564 0.008 0.002 0.003 0.000
2000 0.179 0.241 0.280 0.422 0.005 0.005 0.003 0.003
5000 0.089 0.129 0.170 0.227 0.008 0.007 0.006 0.008

Note: G denotes the Gumbel distribution.
Table 1. Empirical size under correct specification (Ui ∼ N(0, 1)).

To evaluate the power properties meaningfully despite the size distortions of the IMT, we present
the size-adjusted power in Figure 1.

For the Logistic alternative, our method exhibits a power of approximately 0.2 across all settings,
whereas the IMT shows negligible power, close to zero. While a power of around 0.2 is not particularly
high, it represents a reasonable performance given the close distributional similarity between the
Logistic and Normal distributions.

Regarding the Cauchy alternative, our method functions effectively even with moderate sample
sizes; for instance, it achieves a power of 0.50 for X ∼ Gumbel(0, 1) at n = 1000. Except for the case
where X ∼ N(0, 1), the power increases with sample size, exceeding 0.7 at n = 5000. Interestingly,
we observe a tendency where the power increases as data imbalance becomes more severe. This

1The degree of data imbalance, measured by the proportion of Yi = 1 (average of 1,000 replications), is essentially
unchanged across sample sizes. The proportions are 0.72 for X ∼ N(0, 1), 0.88 for X ∼ N(0.5, 1), 0.86 for X ∼ G(0, 1),
and 0.95 for X ∼ G(0.5, 1).
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Figure 1. Empirical size-adjusted power under alternatives. The figure shows re-
jection frequencies against sample size (on a logarithmic scale) for each combination
of the alternative and the distribution of X.

could be attributed to the fact that the maximum likelihood estimates are more likely to deviate
from the true values under high imbalance, thereby facilitating detection. On the other hand, the
IMT has little detection power at n ≤ 1000. It does not perform well until the sample size becomes
sufficiently large (n ≥ 2000), occasionally surpassing our method. Unlike our approach, however,
the IMT struggles with high data imbalance.2 In the case of X ∼ Gumbel(0.5, 1), the IMT fails
to perform adequately unless n = 5000, and its power remains consistently lower than that of our
method across all sample sizes.

2The degree of data imbalance under the alternative specifications is measured by the average proportion of Yi = 1
(averaged over 1,000 replications). The values for X ∼ N(0, 1), X ∼ N(0.5, 1), X ∼ Gumbel(0, 1), and X ∼
Gumbel(0.5, 1) are, respectively: 0.67–0.68, 0.82, 0.81, and 0.90 for Logistic; 0.67, 0.79, 0.78, and 0.87 for Cauchy;
and 0.72, 0.83, 0.82, and 0.88 for the heteroskedasticity case. In the Logistic case, the 0.67–0.68 range reflects minor
sampling fluctuations across n.
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Similar trends are observed for the heteroskedasticity alternative. Our method maintains relatively
high power even at small sample sizes (n ≤ 1000); for example, it yields a power of 0.75 for X ∼
N(0.5, 1) at n = 500. In contrast, the IMT often shows power below 0.05 in these settings. As the
sample size increases (n ≥ 2000), the IMT’s power improves, in some instances outperforming our
method.

In addition to the results above, we also computed the power based on subsampling using the
same 30% block size. Although the power is lower compared to the size-adjusted power, and the
detection of the subtle Logistic alternative becomes negligible, the test still exhibits respectable power
against other distinct alternatives. For example, for sample sizes n = (300, 500, 1000, 2000, 5000),
the power values are (0.23, 0.23, 0.25, 0.41, 0.78) in the Cauchy case with X ∼ Gumbel(0.5, 1), and
(0.11, 0.18, 0.41, 0.71, 0.90) in the heteroskedasticity case with X ∼ N(0.5, 1). Given that these
power levels are achieved while maintaining the size control shown in Table 1, the proposed method
is considered sufficiently useful for practical applications.

Overall, the simulation results demonstrate that our proposed test is effective, even though it
tends to be conservative with an empirical size often falling below 0.05. It shows particularly
high power against alternatives often discussed in economics, such as heavy-tailed distributions and
heteroskedasticity. When compared to the IMT (OPG-based) in terms of size-adjusted power, our
method proves to be advantageous especially when the sample size is not large or the data imbalance
is high. These characteristics complement the weaknesses of the IMT, which performs poorly under
these conditions.3
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