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Abstract

We estimate a model explicitly describing product entry and exit in a frictional
product market for micro category data, i.e., snack foods data. The paper shows
that the first/new price when a product entry mainly determines the average price
and search frictions quantitatively contribute to price variations. A price change
probability by the product entry is 8.4 percent though a price change probability
after product entry is only 1.4 percent. Search frictions increase the price variation
by 50.5 percent. These results demonstrate that fundamental elements in explain-
ing price variations are ignored in the official price data, such as the consumer price
index and the producer price index, and conventional models that exclude product
entry and exit. Endogenous product entry inducing extensive margins and search
frictions are quantitatively important in analyzing prices.
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1 Introduction

Using product-level data, we show that product entry and exit hold a non-trivial effect

on price dynamics. We use data on snack foods to maintain homogeneity across products

and estimate the Phillips curve developed by Dong et. al (2024). This model explicitly

describes product entry and exit in a frictional product market. By limiting the data, we

evaluate the roles of product entry and exit in prices regardless of product heterogeneity.

The estimation shows that the first/new price when a product entry mainly deter-

mines the average price for snack foods. A price change probability by the product entry

is 8.4 percent though a price change probability after product entry is only 1.4 percent.

Moreover, the search friction works well in a product market and significantly affects the

average price. The search friction constraints unmatched products to find a retailer with

only a 55 percent probability. Shocks related to search frictions, the matching efficiency

shock and the free entry shock, play important roles and explain 15.7 and 9.67 percent of

price variations, respectively. Here, a demand shock is dominant to prices and explains

71.71 percent of price variations.

Search frictions quantitatively contribute to price variations. When we use a model

excluding search frictions under the estimated parameters, the price variation decreases

by 49.5 percent for the aggregate price. These results demonstrate that endogenous

product entry and extensive margins are fundamental elements in explaining price vari-

ations.

Even when we break down the data into the top two companies and small companies

in sales share, search frictions exist for these companies. Interestingly, for the top two

companies, a cost-push shock explains 69.63 percent of price variations. On the other

hand, a demand shock explains 77.53 percent of price variations for small companies.

It is consistent with the data in which the first price average is lower (higher) than the

average price for the top two companies (for small companies). The top two companies

can change prices to a positive cost-push shock under a positive inflation rate in the

sample period and small companies can not add the cost well to their prices.

Our paper contrasts Dong et. al (2024) that estimate the Phillips curve describing
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product entry and exit for all products in Japanese supermarkets. Their analysis is as

comprehensive as the one using the official consumer price index. However, different

product natures, such as chocolates and snacks, are mixed in the estimation. We com-

plement their analysis by focusing on a more detailed category of products, i.e., snack

foods, and in a narrow region, i.e., Tokyo metropolitan area, to reconfirm well fit of the

model to the data.

The rest of our paper is organized as follows. Section 2 describes our data and

documents a set of observed facts. Section 3 introduces the model with product and

price cycles and shows the generalized version of the New Keynesian Phillips. Section

4 contains the Bayesian estimation of our model and the results. In Section 5, we

quantitatively evaluate the effects of endogenous product entry and extensive margins

on prices. In Section 6, we show robust analysis. Finally, Section 7 concludes.

2 Micro Observations for Snack Foods

We use the Nikkei POS scanner data.1 Our data includes sales prices and quantities for

each product at each retail shop on each day from January 2005 to March 2021. To focus

on homogeneous products, our analysis is particularly restricted to snack foods and the

25 supermarkets in Tokyo metropolitan area.2 These supermarkets appear throughout

the sample to avoid any bias caused by shop bankruptcy, i.e., a shop cycle, in price,

entry rate, and exit rate. We interpret the data from the 25 supermarkets as a random

sample to observe product and price cycles at the product level. Our data includes 723

snack foods as the maximum and 407 as the minimum in the sample periods.3 About

90 companies produce snack foods in 2019 year.

An advantage of our data is that we can observe product cycles. An individual

product’s life cycle can be identified through its entry into and exit from the product

1Appendix A shows detailed information about the data, including product identification by Japanese

Article Number (JAN) code, average price, entry rate, and exit rate.
2Tokyo metropolitan area includes four prefectures, Tokyo, Kanagawa, Chiba, and Saitama.
3See Appendix A for a description of how we convert daily data into monthly data.
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market. We can also observe price cycles, by which we refer to how the individual

product’s price changes during its life cycle. The price information provides evidence

about price-setting behavior.

We summarize our key empirical facts as four observations. We will use these obser-

vations to guide our theoretical model and then estimate it using Bayesian inferences.

Observation 1: an average price for snack foods.

Based on individual prices in the Nikkei POS scanner data, we construct the sales-

weighted average price across products and shops including temporary sales for each

month. An average of the average price for snack foods is 122.26 yen and its standard

deviation is 5.75 yen for the sample period.4

Observation 2: product cycles.

The JAN (Japanese Article Number) codes in Nikkei POS scanner data allow us to

identify the numbers of new products and exiting products, which are used to calculate

product entry and exit rates. Table 1 shows basic statistics of monthly product entry

and exit. The average of the number of products is 572.9 and the standard deviation of

the number of products is 61.6, as shown in Table 1. The number of products changes

over time.

The product entry rate is calculated as the number of newly introduced products by

producers in a given quarter divided by the total number of products in that quarter.

We identify a new product when the new product appears in at least one retail shop.

The product exit rate is calculated as the number of exiting products in a given quarter

divided by the total number of products in that month. We classify an existing product

as exiting from the market when none of the retail shops sell the product. Note that we

define entry rates and exit rates at the product level and not at the shop level.5 The

average product entry rate of snack foods is 0.086 and its standard deviation is 0.025 as

4See Appendix A for details to calculate the average price.
5See more details of the definitions of the entry rate and the exit rate in Appendix A.
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shown in Table 1. The average product exit rate is 0.084 and its standard deviation is

0.021. The product entry rate is more volatile than the product exit rate. The product

exit rate implies that the product cycle is on average 12 months. We calculate the

duration of a product by taking the inverse of the product exit rate.

Observation 3: price cycles.

We find that the first/new prices behave differently from the subsequent prices. As

shown in Table 1, the standard deviation of the average price is 5.77 yen and it is 23.4

yen for the average new price. It implies that existing prices are not as flexible as new

prices. New prices have a larger effect on the average price than existing prices do.

Observation 4: search frictions.

We provide evidence on search frictions by using the Nikkei POS data to construct

matching ratios for retailers. In the retailer’s matching ratio for a given product, the

numerator is the number of retail shops selling this product in a given period. The

denominator is given by the number of shops in the sample, i.e., 25 supermarkets. In

addition to the simple average of the matching ratio, we calculate the weighted average

of the matching ratio by sales weights.6

The average matching ratios are 0.3 for the simple average and 0.69 for the weighted

average by sales at a monthly frequency. Matching ratios are sufficiently less than one.

This observation implies the existence of search frictions in the snack foods market.

3 Model with Product and Price Cycles

We basically use the model developed by Dong et. al (2024). The model captures product

entry and exit with a frictional product market.

6In the case of a simple average, the matching ratio is given by the average of the matching ratio

with equal weights across products. Appendix A has a detailed description of how we calculate these

matching ratios.
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3.1 Model Setting

Time is discrete and continues forever. A measure 1 of retailers searches for products in

a decentralized product market. An endogenous measure of products also searches for

retailers. Each product in the market represents a distinct variety. Products can enter

the product market at a cost κt that works as an entry shock.

Let the measure of unmatched retailers be ut at time t and the measure of products

searching for retailers be vt. The matching function exhibits constant return to scales

and is given by

m (ut, vt) = χt
utvt

(uγ
t + vγt )

1
γ

with γ > 0,

where χt is a matching efficiency shock and it is one in steady state. Define market

tightness as θt = vt/ut. The probability for a product to be matched with a retailer

is denoted as s(θt) and the probability for an unmatched retailer to find an available

product is denoted as q(θt), where

s(θt) =
mt

vt
= χt

1

(1 + θγt )
1
γ

, (1)

q(θt) =
mt

ut

= χt
θt

(1 + θγt )
1
γ

. (2)

We assume that s(0) = 1 and q(∞) = 1. To simplify notation, we use (st, qt) directly

and omit the argument θt when there is no confusion. Each match is destroyed at the

end of a period with an exogenous probability ρ ∈ (0, 1).

Once a retailer and a product match, they exchange Z units of the product and

negotiate a new price through the Nash bargaining protocol. With a probability α, there

is no renegotiation of the price within the match, and the price does not change. With a

probability 1− α, the match can renegotiate the price. New prices are negotiated when

either new matches are formed or the match gets the opportunity to renegotiate. This

infrequent negotiation of prices directly follows Shimer (2004), Hall (2005), and Gertler

and Trigari (2009) in labor search models. For simplicity, the amount of production in

each match Z is exogenous. Moreover, the cost of producing Z units of any product

is Xt, where Xt can include any cost of production even though we do not specify the
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production function at this stage. Changes in Xt could be interpreted as potential cost-

push shocks. The benefit for retailers of acquiring Z units of any product is given by

ZB
t , where ZB

t is a random shock and depends on the sales revenue of the final good.

We view ZB
t as a demand shock to products.

The free entry condition for a product is

κt = βstEtJt+1

(
P̃t+1

)
, (3)

where Et is the expectations operator. The value for a product with a newly negotiated

price P̃t+1 is Jt+1(P̃t+1). Since we assume that each match entails a distinct product,

this free entry condition decides the number of new products in the product market.

A product enters the market when the gain from selling the new product is enough to

cover the cost of entry. If a product is matched with a retailer, production and trade

will occur in the following period. There is a one-period lag for production after a new

match, similar to the timeline of Gertler and Trigari (2009).

The value function for a newly matched product at time t is

Jt(P̃t) = ZP̃t −Xt + β (1− ρ)Et

[
αJt+1

(
P̃t

)
+ (1− α)Jt+1

(
P̃t+1

)]
. (4)

If the match cannot renegotiate, the price unchanges. If the match renegotiates, a new

price P̃t+1 will be determined. The term ZP̃t−Xt is the flow benefit of being in a match,

and β (1− ρ)Et

[
αJt+1

(
P̃t

)
+ (1− α)Jt+1

(
P̃t+1

)]
shows the continuation value of the

match.

Now consider the value functions for a retailer. Let V 1
t

(
P̃t

)
denote the value function

for a matched retailer with a newly negotiated price P̃t at time t and

V 1
t

(
P̃t

)
= ZB

t − ZP̃t + βEt

[
α (1− ρ)V 1

t+1

(
P̃t

)
+ (1− α)(1− ρ)V 1

t+1

(
P̃t+1

)
+ ρV 0

t+1

]
.

(5)

The flow benefit of the match is given by the term ZB
t − ZP̃t. If the match survives at

time t+ 1, the continuation value is V 1
t+1

(
P̃t

)
with a probability α. With a probability

1−α, the match renegotiates a new price P̃t+1 and the continuation value is V 1
t+1

(
P̃t+1

)
.

If the match is destroyed, the retailer becomes unmatched with the value function V 0
t+1.
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The value of an unmatched retailer is

V 0
t = βEt

[
qtV

1
t+1

(
P̃t+1

)
+ (1− qt)V

0
t+1

]
. (6)

The unmatched retailer finds a match with a probability qt. Production will take place

in the following period, and the value of the match is therefore EtV
1
t+1

(
P̃t+1

)
. With the

complementary probability 1 − qt, the unmatched retailer remains unmatched and has

the continuation value V 0
t+1. Here, the benefit from having a new match is V 1

t

(
P̃t

)
−V 0

t

for the retailer.

The Nash bargaining solves the price P̃t in

max
P̃t

[
Vt

(
P̃t

)
− V 0

t

]1−b [
J1
t

(
P̃t

)]b
,

where b is the bargaining power for the producer. The solution P̃t is determined by

b
[
Vt

(
P̃t

)
− V 0

t

]
= (1− b)Jt

(
P̃t

)
. (7)

Lastly, we describe the flow conditions and the aggregate price index. The measure

of unmatched retailers in the beginning of period t is

ut = 1−Nt, (8)

where Nt denotes the measure of matches. It evolves according to

Nt+1 = (1− ρ)Nt + qtut. (9)

As prices in the new matches are set through Nash bargaining and the old prices in

survived matches are either not adjusted from time t to time t+ 1 or replaced by newly

negotiated prices, we use an aggregate price index Pt to denote the aggregate price in

the economy at time t:

NtPt = (1− ρ)αNt−1Pt−1 + (1− ρ)(1− α)Nt−1P̃t + qt−1ut−1P̃t. (10)

The aggregate price index completes the description of the model, where (1), (2), (3),

(4), (5), (6), (7), (8), (9), and (10) are used to solve the model.7

7See Appendix C for more details of this model.
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In our model, entry decisions are endogenous and depend on the parameters and

shocks. However, we treat exits as exogenous. The model generates an endogenous

number of products and can be used to examine how product entry is correlated with

price and demand.

For the aggregate price index, the model has both extensive and intensive margins of

price changes. The extensive margins refer to the change in the composition of products

in the aggregate price index. The intensive margins refer to the price change by each

product. The endogenous numbers of existing and new matches give rise to endogenous

extensive margins of price changes. The newly negotiated prices reflect endogenous in-

tensive margins and the price discounting factor produces an exogenous intensive margin

of price changes.

3.2 The New Keynesian Phillips Curve

We highlight the role of an endogenous number of products with search frictions by log-

linearizing the system of equations around a constant steady state with zero inflation.

Linearized price equations are convenient for revealing the features of price dynamics, in

particularly compared with the standard New Keynesian Phillips curve by Calvo (1983)

and Yun (1996). We express the log-deviation of a variable (e.g., Pt) from its steady

state value (P ) by placing a hat (ˆ) over the symbol (P̂t).
8

We have the following linearized price equation:

πt = αβ(1− ρ)Etπt+1

− bβq(V 1 − V 0)
[1− αβ(1− ρ)] [1− α (1− ρ)]

ZP̃

(
θ̂t + κ̂t

)
+ b

[1− αβ(1− ρ)] [1− α (1− ρ)]ZB

ZP̃
ẐB

t

+ (1− b)
[1− αβ(1− ρ)] [1− α (1− ρ)]X

ZP̃
X̂t, (11)

where the inflation rate is defined as πt ≡ P̂t − α(1− ρ)P̂t−1.

8See details for the steady state in Appendix B and a complete set of the linearized model in Appendix

C.
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This Phillips curve includes three types of shocks: a free entry shock, a final demand

shock, and a cost-push shock in production. The free entry shock is a new shock for the

Phillips curve and is specific to our model with endogenous entry of products. Current

inflation depends on the expected future inflation, the number of products, the number

of new products, the market tightness, the free entry shock, the demand shock, and

the cost-push shock. The probability of price adjustment α and the exit rate ρ affect

current inflation. The market tightness, measured by the ratio of available products to

the unmatched retailers, is negatively related to inflation. The exit rate ρ, the steady

state matching probability q, and the bargaining power of producers b affect the response

of the inflation rate to market tightness.

Product market frictions have explicit effects on inflation through the market tight-

ness θ̂t, which links product cycles with price dynamics. In response to changes in the

demand for products, the entry rate of products changes. Therefore, the number of new

matches M adjusts, which implies changes in the fraction of products with new prices.

Changes in the number of new matches will affect the number of total matches N in the

following period. As a result, the number of existing matches that either adjust prices by

the price discounting/premium factor or have the opportunity to set new prices changes.

One way to interpret our results is that the model endogenizes the price change prob-

ability, such as the Calvo parameter, through a search and matching product market.

The response of inflation to demand shocks increases as α decreases due to an intensive

margin effect.

4 Estimation and Results

We estimate the model with Bayesian inferences using Dynare 5.2. For estimation, we

log-linearize the system of equations around a constant steady state with zero inflation.
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4.1 Data and Observation Errors

We use Nikkei POS scanner data at a monthly frequency over the sample from 2005M1

to 2021M3. The estimation uses data from three time series: the average price, the

number of products, and the final sales of new products, which correspond to Pt, Nt,

and ZB
t in our model. All these data are percentage deviations from trends calculated

by the HP filter.

To map data into our model, we assume observation errors in the average price, the

number of products, and the sales of the new products to adjust the gap between the data

and the model. For the number of products, the observation error is given by 10 percent

of one standard deviation of the number of products in the data, i.e., 0.05/10. Similarly,

the observation error for the final sales of the new products is 0.35/10. Observation

errors are assumed to be i.i.d. normally distributed with zero mean.

The gap between Pt and the average price can come from two sources. Firstly, the

average price is one between retailers and consumers. Our model focuses on prices

between retailers and producers. Secondly, the average price includes temporary sales.

Our model does not incorporate temporary sales at store levels.

We justify the usage of the average price by showing retail prices measured by the

CPI closely depend on producer prices measured by the CGPI (the Corporate Goods

Price Index) after excluding temporary sales in Japan. Here, CPI corresponds to prices

between consumers and retailers, and CGPI corresponds to prices between producers and

retailers. CPI excludes temporary sales prices, and the numbers of goods in baskets are

constant in the CPI and CGPI. We limit these data to correspond to product categories

in the Nikkei data and calculate their correlation. The correlation is quite high and 0.88

at the quarterly frequency in our sample period. So the average price includes price

information between producers and retailers. We use the average price for estimation

and assume ϵerrt to fill the gap between the average price and Pt from the model. The

standard deviation of observation errors is estimated by Bayesian inference as follows.

P̂ obs
t = P̂t + ϵerrt , (12)
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where P̂ obs
t is the SBPI, P̂t is the trend component from the model’s Pt, and ϵerrt is i.i.d.

normally distributed with zero mean and a standard deviation σerr. Here, ϵerrt absorbs

unnecessary price variations through temporary sales. We can interpret this equation

as retailers ex post setting retail prices by a constant markup on producer prices with

temporary adjustments.

4.2 Calibrated Parameters and Shocks

We set the value of the discount factor as a conventional value of 0.9967 for a monthly

model. For markups between producers and retailers ZP̃/X and between retailers and

consumers ZB/ZP̃ in Japan, we follow Kondo (2020) and assume 1.687. This is a value-

added markup and is consistent with our model. We calibrate the exit rate from data

as ρ = 0.084. Steady state values of Z and P̃ normalized to ones.

We consider four types of shocks: the matching efficiency shock χt, the free entry

shock κt, the final demand shock ZB
t , and the cost-push shock Xt, as shown in a model.

Each shock follows an AR(1) process where

χ̂t = ρeχ̂t−1 + ϵet ,

κ̂t = ρfeκ̂t−1 + ϵfet ,

X̂t = ρxX̂t−1 + ϵxt ,

ẐB
t = ρzbẐ

B
t−1 + ϵzbt .

The disturbances (ϵet , ϵ
fe
t , ϵxt , ϵ

zb
t ) are i.i.d normally distributed with mean zero and stan-

dard deviations (σe, σfe, σx, σzb), respectively.

4.3 Prior Distributions

Table 2 shows moments for the prior distributions of the structural parameters. We

follow the setting in Dong et. al (2024) that use all products from the Nikkei POS

data. We assume that the matching friction parameter γ follows an Inverse Gamma

Distribution since it should be positive. The producer’s bargaining power b needs to be
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in [0, 1], so we assume that it follows a Beta distribution. Regarding the shock persistent

parameters and the standard deviations of the disturbances, we follow previous studies

and assume Beta distributions and Inverse Gamma Distributions, respectively. For the

means of the standard deviations of the demand shocks and the cost-push shock, we

set 0.2. For the mean of the standard deviation of price observation errors, we assume

50 percent of the standard deviation of the average price, i.e., 0.038/2. The means of

the standard deviations of the matching efficiency shock and the free entry shock are

assumed to be 0.4.

4.4 Posterior Distributions and Variance Decomposition

Table 3 shows moments for the posterior distributions. The estimation results suggest

the existence of search frictions among products. The mean of the matching curvature

parameter γ is 0.855. We can calculate the steady state matching probability for an

unmatched product as 0.546.9 Only about 55 percent of unmatched products can find a

retailer. We also provide results on the role of matching frictions in the product market

through the variance decomposition in Table 4.

In Table 3, the bargaining power parameter for the product is 0.747. The optimal

price change probability after product entry 1 − α is 0.014. It implies that only 1.4

percent of products change prices each month after the first price. From product entry,

8.4 percent of products set the first price every month on average since the entry rate

and the exit rate are the same in the steady state. Our result suggests that price changes

are mainly brought by product entry.

As shown in Table 4, shocks related to search frictions, the matching efficiency shock

and the free entry shock, play important roles and explain 15.7 and 9.67 percent of

price variations, respectively. On the other hand, conventional shocks for prices, the

demand shock and the cost-push shock, explain 71.71 and 2.92 percent of price variations,

respectively. Thus, the demand shock has the largest effect on the snack prices and about

9Using the estimated parameters in Table 3, we can calculate all the steady state values such as

κ = 2.55, q = 0.346, s = 0.546, N = 0.805, m = 0.068, u = 0.195, v = 0.124, and θ = 0.633.
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25 percent of price variation is explained by shocks related to search frictions.

5 Evaluating Endogenous Product Entry and Exten-

sive Margins

In this section, we use an estimated model to evaluate how much price variation is

explained by endogenous product entry and the extensive margins.

5.1 Exogenous Entry Model

To quantitatively investigate the role of endogenous entry, we shut down endogenous

entry by assuming exogenous entry and exit rates such that the numbers of new products

and total products are constant. This implies that the fraction of products with a new

price is also constant. We label this model an exogenous entry model and check its

quantitative performance.

Without the free entry condition, we modify the value function for a newly matched

product as

J̄1
t (P̃t) = ZP̃t −Xt + βEt

[
α(1− ρ)J̄1

t+1(P̃t) + (1− α)(1− ρ)J̄1
t+1(P̃t+1) + ρJ̄0

t+1

]
.

On the other hand, the value of a product without a match is

J̄0
t = βEt

[
s̄J̄1

t+1(P̃t+1) + (1− s̄)J̄0
t+1

]
,

where we have q̄ = s̄ represent steady state matching probabilities. The measure of

unmatched products is given by

vt = 1−Nt.

In this case, the model is linear since variables related to product market frictions

and matches, such as qt, st, Nt, ut, vt, and θt, are constant. This model produces very

similar inflation dynamics to demand shocks and cost-push shocks to the ones generated
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by the New Keynesian Phillips curve as

πt = αβ(1− ρ)Etπt+1

+ b
[1− αβ(1− ρ)] [1− α (1− ρ)]ZB

ZP̃ e
ẐB

t

+ (1− b)
[1− αβ(1− ρ)] [1− α (1− ρ)]X

ZP̃ e
X̂t. (13)

The new price is given by ˆ̃Pt = [1− α (1− ρ)] πt and P̃ e is the steady state of the new

price. The effects of product and price cycles appear through ρ and α.

5.2 Endogenous Entry Effect

We compare the models with endogenous product entry and exogenous product entry

by simulating the models’ responses to the four types of shocks. The endogenous entry

model is the baseline model, as in Section 3. For the exogenous entry model, (13)

describes the intensive margin effect. Current inflation only depends on expected future

inflation, the demand shock and the supply shock. The coefficients do not include steady

state variables except for X, ZB, Z and P̃ e. Using the estimated parameters in Table 3

and setting Z = 1 and ZB = 1.687, the steady state new price P̃ e is calculated as 1.41.

This steady state new price depends on the estimated parameters and does not depend

on other steady state values. Note that owing to the exogenous entry and exit rates,

only the demand and supply shocks out of the four shocks affect inflation dynamics.

Table 5 shows the standard deviations of prices from our simulations. The standard

deviation of the new price P̃t increases by 51.9 percent due to endogenous product entry

when we compare the baseline model and the exogenous entry model. This is given by

an increased intensive margins by endogenous product entry.

For the aggregate price Pt, the price variation increases by 50.5 percent when compar-

ing the endogenous entry model with the exogenous entry model. These results demon-

strate that endogenous product entry and extensive margins are fundamental elements

in explaining price variations.
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6 Robust Analysis

In this section, we restrict samples and show that our estimation result in the last section

is robust. In particular, we show two cases. The first one is to use snack foods data for

two top sales companies that have 50 percent shares in the snack market. The second

one is to restrict data only to below the top 10 companies.

6.1 Top Companies

In our data for snack foods, we have about 90 companies that produce snack foods.

Among these companies, the top two companies, Calbee and KOIKE-YA Inc, have about

50 percent sales share in 2019. They produce about 440 products, about 36 percent of

all snack foods.

We restrict data to these two top companies to secure homogeneity across products.

We calibrate the exit rate from data as ρ = 0.091. For the number of products, the

observation error is given by 10 percent of one standard deviation of the number of

products in the data, i.e., 0.069/10. Similarly, the observation error for the final sales

of the new products is 0.42/10. Observation errors are assumed to be i.i.d. normally

distributed with zero mean. For the mean of the standard deviation of price observation

errors, we assume 50 percent of the standard deviation of the average price, i.e., 0.047/2.

Other settings for the estimation remain the same as in Table 2.

Table 6 shows moments for the posterior distributions. The estimation results suggest

the existence of search frictions among products by the top two companies. The mean of

the matching curvature parameter γ is 0.745. We can calculate the steady state matching

probability for an unmatched product as 0.499.10 Only about 50 percent of unmatched

products can find a retailer.

As shown in Table 6, the bargaining power parameter for the product is 0.711. The

optimal price change probability after product entry 1− α is 0.023. It implies that only

10Using the estimated parameters in Table 6, we can calculate all the steady state values such as

κ = 2.15, q = 0.297, s = 0.499, N = 0.765, m = 0.07, u = 0.235, v = 0.14, and θ = 0.594.
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2.3 percent of products change prices each month after the first price. This number

is slightly bigger than the one from Table 3. However, our result suggests that price

changes are mainly brought by product entry since companies can set a new price with

a probability of 9.1 percent.

As shown in Table 7, for the top two companies, the cost-push shock explains 69.63

percent of price variations and it is the largest contribution among the four types of

shocks. This is a clear difference from Table 4. It implies that it is not so difficult to add

production costs to their prices for companies with a large sales share under a positive

inflation rate in our sample period. We reconfirm it in the data. The average price of

123.96 yen is higher than the average new price of 111.99 yen for the top two companies.

These companies can increase prices after product entries according to production costs.

6.2 Small Companies

We focus on small companies in comparison to the top two companies. We define small

companies as being below the top 10 companies in sales in 2019. These small companies

have about 15 percent sales share in 2019. They produce about 30 percent of all snack

foods.

We calibrate the exit rate from data as ρ = 0.061. For the number of products,

the observation error is given by 10 percent of one standard deviation of the number of

products in the data, i.e., 0.074/10. Similarly, the observation error for the final sales

of the new products is 0.12/10. Observation errors are assumed to be i.i.d. normally

distributed with zero mean. For the mean of the standard deviation of price observation

errors, we assume 50 percent of the standard deviation of the average price, i.e., 0.095/2.

Other settings for the estimation remain the same as in Table 2.

Table 8 shows moments for the posterior distributions. The estimation results suggest

the existence of search frictions among products by the top two companies. The mean of

the matching curvature parameter γ is 1.235. We can calculate the steady state match-

ing probability for an unmatched product as 0.823.11 About 82 percent of unmatched

11Using the estimated parameters in Table 7, we can calculate all the steady state values such as
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products can find a retailer.

As shown in Table 8, the bargaining power parameter for the product is 0.765. The

optimal price change probability after product entry 1− α is 0.023. It implies that only

2.3 percent of products change prices each month after the first price. This number

is slightly bigger than the one from Table 3. However, our result suggests that price

changes are mainly brought by product entry since companies can set a new price with

a probability of 6.1 percent.

As shown in Table 9, for small companies, the demand shock explains 77.53 percent

of price variations and it is the largest contribution among the four types of shocks. This

is a clear difference from the top two companies as shown in Table 6. It implies that it

is difficult to add production costs to their prices for small companies with a small sales

share. We reconfirm it in the data. The average price of 147.76 yen is lower than the

average new price of 153.74 yen for small companies. These small companies can not

increase prices after product entries to production costs and probably discount prices for

older products.

7 Concluding Remark

We estimate a model including product entry and exit with search frictions and show

that endogenous product entry inducing extensive margins and search frictions are quan-

titatively important in explaining price variations.

These fundamental elements in explaining price variations are ignored in the offi-

cial data and conventional models in which product entry and exit are excluded. This

disadvantage can misidentify price variations in models and the price index.

κ = 5.21, q = 0.287, s = 0.823, N = 0.825, m = 0.05, u = 0.175, v = 0.06, and θ = 0.394.
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Table 1: Basic Statistics

Average Standard deviation

Number of products 572.92 61.65

Entry rate 0.086 0.025

Exit rate 0.084 0.021

Average price 122.26 5.75

Average new price 118.88 23.37

Note: Monthly base.
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Table 2: Prior Distributions

Parameters Description Mean S.D. Distribution

γ Matching friction parameter 2 2 Inv. Gamma

b Bargaining power of producers 0.5 0.1 Beta

α Probability of price change after entry 0.8 0.1 Beta

ρx Persistence of cost-push shock 0.5 0.15 Beta

ρzb Persistence of demand shock 0.5 0.15 Beta

ρe Persistence of matching efficiency shock 0.5 0.15 Beta

ρfe Persistence of free entry shock 0.5 0.15 Beta

σx S.D. of cost-push shock 0.2 0.2 Inv. Gamma

σzb S.D. of demand shock 0.2 0.2 Inv. Gamma

σe S.D. of matching efficiency shock 0.4 0.4 Inv. Gamma

σfe S.D. of free entry shock 0.4 0.4 Inv. Gamma

σerr S.D. of price observation error 0.038 0.038 Inv. Gamma

Note: S.D. denotes a standard deviation.
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Table 3: Posterior Distributions

Parameters Mean 90 percent interval

γ 0.855 [0.563, 1.108]

b 0.747 [0.706, 0.793]

α 0.986 [0.974, 0.997]

ρx 0.473 [0.248, 0.695]

ρzb 0.176 [0.088, 0.263]

ρe 0.299 [0.166, 0.438]

ρfe 0.352 [0.17, 0.514]

σx 0.179 [0.064, 0.301]

σzb 0.352 [0.322, 0.382]

σe 0.159 [0.105, 0.214]

σfe 0.186 [0.112, 0.259]

σerr 0.039 [0.036, 0.043]

MDD 615.362

Note: MDD denotes marginal data density.
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Table 4: Variance Decomposition in Percent

Variable Cost-push Demand Matching efficiency Free entry

Pt 2.92 71.71 15.7 9.67

P̃t 1.74 77.4 13.42 7.44

Nt 0.21 0.3 65.24 34.26

Mt 0.15 0.38 67.48 31.99

θt 0.31 0.63 39.81 59.25

Note: Cost-push, Demand, Matching efficiency, and Free entry denote cost-push shock,
demand shock, matching efficiency shock, and free entry shock, respectively.
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Table 5: Standard Deviation of Prices

P̃t S.D. Change

Exo. model + demand/supply shocks 0.0376

Baseline model + all shocks 0.0571 51.9

Pt S.D. Change

Exo. model + demand/supply shocks 0.0099

Baseline model + all shocks 0.0149 50.5

Note: Change is evaluated by percent increase from the exogenous entry model. Exo.
model denotes an exogenous entry model. S.D. denotes a standard deviation.
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Table 6: Posterior Distributions for Top Two Companies

Parameters Mean 90 percent interval

γ 0.745 [0.516, 0.943]

b 0.711 [0.656, 0.762]

α 0.978 [0.959, 0.997]

ρx 0.583 [0.276, 0.838]

ρzb 0.168 [0.086, 0.236]

ρe 0.294 [0.14, 0.467]

ρfe 0.353 [0.153, 0.551]

σx 0.982 [0.075, 2.987]

σzb 0.414 [0.38, 0.451]

σe 0.182 [0.118, 0.243]

σfe 0.22 [0.126, 0.313]

σerr 0.045 [0.039, 0.051]

MDD 492.269

Note: MDD denotes marginal data density.

25



Table 7: Variance Decomposition in Percent for Top Two Companies

Variable Cost-push Demand Matching efficiency Free entry

Pt 69.63 23.16 4.30 2.91

P̃t 51.09 39.59 5.82 3.51

Nt 11.68 0.25 56.02 32.05

Mt 6.72 0.35 61.55 31.38

θt 14.07 0.52 32.93 52.48

Note: Cost-push, Demand, Matching efficiency, and Free entry denote cost-push shock,
demand shock, matching efficiency shock, and free entry shock, respectively.
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Table 8: Posterior Distributions for Small Companies

Parameters Mean 90 percent interval

γ 1.235 [0.753, 1.675]

b 0.765 [0.706, 0.823]

α 0.977 [0.957, 0.995]

ρx 0.461 [0.222, 0.681]

ρzb 0.168 [0.086, 0.236]

ρe 0.204 [0.104, 0.294]

ρfe 0.339 [0.15, 0.493]

σx 0.188 [0.064, 0.339]

σzb 0.792 [0.732, 0.855]

σe 0.161 [0.102, 0.218]

σfe 0.179 [0.099, 0.252]

σerr 0.097 [0.088, 0.105]

MDD 225.364

Note: MDD denotes marginal data density.
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Table 9: Variance Decomposition in Percent for Small Companies

Variable Cost-push Demand Matching efficiency Free entry

Pt 0.67 77.53 11.72 10.08

P̃t 0.41 81.45 10.00 8.14

Nt 0.17 1.83 54.67 43.34

Mt 0.12 2.29 55.75 41.84

θt 0.18 2.79 41.99 55.04

Note: Cost-push, Demand, Matching efficiency, and Free entry denote cost-push shock,
demand shock, matching efficiency shock, and free entry shock, respectively.
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Appendix

We provide more details about the Nikkei data and derivations of our models in the

Appendix.

A Details of Nikkei Data

A.1 Product Identification

A barcode including the Japanese Article Number (JAN) code is printed on all products

and products are distinguished by fairly detailed classifications in Nikkei POS scanner

data. In the JAN code, the first seven digits indicate the company code and the last

six digits indicate the individual product. When JAN codes are different for the same

type of products by the same company, these products are different in terms of packag-

ing, ingredients, etc. In addition, the barcodes provide information about the product

category (such as butter, yogurt, or shampoo) and the producer of each product.

A.2 Price

The Nikkei data contains the sales values and quantities sold for each product in each

shop on a daily basis. By dividing the sales values by the quantities sold, we calculate the

daily price for each product. Based on these individual prices, we calculate an average

price for all products and an average price for new products. We use sales values as

weights to calculate average prices.

To calculate the average prices, we use price levels. The first reason is that this is

the average price that Japanese consumers face in shops to decide on purchases. The

second reason is that price dispersion is not large because prices in the Nikkei data are

for products in supermarkets where food products and daily necessities are sold and we

restrict samples to snack foods.

In details, an average price is calculated as follows. Let pi,s,d and qi,s,d denote the

price and the quantity sold of product i at shop s on day d. Then, we compute the price
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in month t as: pi,s,t =
∑

d∈t pi,s,dqi,s,d∑
d∈t qi,s,d

. By aggregating this price across products and shops,

we calculate an average price AveragePricet.

Average Pricet =

∑
i∈I,s∈S priceistweightist∑

i∈I,s∈S weightist
,

where weightist =
∑

d∈t pi,s,dqi,s,d and I and S denote the set of products and shops,

respectively. We have similar equations for an average price for new products.

A.3 Entry Rate and Exit Rate

In calculating the entry (exit) rate, we define a new (discontinued) product as one for

which a transaction is firstly (finally) recorded in a given period. Then, we obtain the

number of new (discontinued) products in a given period, which is divided by the total

number of products in a given period to calculate entry (exit) rates. Note that these

rates are not weighted by sales. We interpret that a new product enters into the market

when we observe the new product in at least one shop. We interpret that an existing

product exits from the market when no shops sell the existing product. Thus, entry

(exit) rates are at the product level. Equations for the entry (exit) rate are given by

Entry Ratet =
Number of New Products at T ime t

Total Number of Products at T ime t
,

Exit Ratet =
Number of Discontinued Products at T ime t

Total Number of Products at T ime t
.

A.4 Matching Ratio

The matching ratio calculates the fraction of shops that sell a product. Specifically, the

matching ratio is obtained as follows. The Nikkei POS data includes observations at the

product-shop level on a daily basis. Using this, we count the number of shops that sell

product i at least one day in month t, denoted by # of shopsi,t. Given that product

i is classified into category c, we can calculate the maximum number of these numbers
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across products within category c, denoted by Max # of shopsc,t. Then we define the

matching ratio of product i in quarter t as:

# of shopsi,t
Max # of shopsc,t

.

In this paper, we use 25 supermarkets in Tokyo metropolitan area as a denominator.

Finally, we take the simple average (or sales-weighted average) across products of these

ratios to obtain the time series.

B Steady State

Steady state values for eight endogenous variables given by J , Q, u, v, N , M , q, and θ,

are given by following eight equations under given parameters β, ρ, α, b, and γ.

J [1− β(1− ρ)] = −X + ZP̃ ,

Q [1− β(1− ρ− q)] = ZB − ZP̃ ,

bQ = (1− b)J,

u = 1−N,

ρN = M,

M =
uv

(uγ + vγ)
1
γ

,

θ =
v

u
,

q =
M

u
,

where Q = V 1 − V 0 and X, Z, P̃ , and ZB are exogenously given.
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C Complete Set of Model and Linearization

C.1 Price Aggregator

Price aggregation is given by

NtPt = α(1− ρ)Nt−1Pt−1 + (1− α)(1− ρ)Nt−1P̃t +Mt−1P̃t, (14)

where α is a probability of no optimal price change at time t.

We assume the following matching function.

Mt = χt
utvt

(uγ
t + vγt )

1
γ

, (15)

where γ is a positive parameter and χt is a matching efficiency shock, where χ = 1 in a

steady state.

In a steady state, we have

NP = α(1− ρ)NP + (1− α)(1− ρ)NP̃ +MP̃ .

We also have an equation for the number of matches.

Nt+1 = (1− ρ)Nt +Mt. (16)

In a steady state,

ρN = M.

Thus, we have

NP = α(1− ρ)NP + (1− α)(1− ρ)NP̃ + ρNP̃ ,

P̃

P
= 1.

By linearizing Eq. (14), we have

N̂t + P̂t = α(1− ρ)
(
N̂t−1 + P̂t−1

)
+(1− α)(1− ρ)

(
N̂t−1 +

ˆ̃Pt

)
+ρ

(
M̂t−1 +

ˆ̃Pt

)
.
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where M̂t denotes a new match as

M̂t =
1

1 + θγ
θ̂t + ût + χ̂t, (17)

and we use a definition of a market tightness and

ut = 1−Nt,

and

uût = −NN̂t. (18)

By linearizing Eq. (16), we have

NN̂t = (1− ρ)NN̂t−1 +MM̂t−1,

N̂t = (1− ρ)N̂t−1 + ρM̂t−1. (19)

Thus, we have

[1− α(1− ρ)] ˆ̃Pt = P̂t − α(1− ρ)P̂t−1

C.2 Value Functions

From a free entry condition given by

κt = βstEtJt+1(P̃t+1),

where κt is a free entry shock and it is κ in a steady state, we have

κ̂t = ŝt + EtĴt+1(P̃t+1). (20)

Together with a definition of a market tightness, we have

st =
Mt

vt
=

χt[
1 +

(
vt
ut

)γ] 1
γ

=
χt

[1 + θγt ]
1
γ

,

then we have

ŝt = − θγ

1 + θγ
θ̂t + χ̂t,
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and so

Ĵt+1(P̃t+1) =
θγ

1 + θγ
θ̂t + κ̂t − χ̂t. (21)

For a product with a contract P̃t at time t,

Jt(P̃t) = ZP̃t −Xt + β(1− ρ)Et

[
αJt+1(gP̃t) + (1− α)Jt+1(P̃t+1)

]
.

Iterating forward, we have

Jt(P̃t) = −Xt + αβ(1− ρ)EtXt+1 + α2β2(1− ρ)2EtXt+2 + · · ·

−ZP̃t − αβ(1− ρ)ZP̃t − α2β2(1− ρ)2ZP̃t − · · ·

+β(1− ρ)(1− α)EtJt+1(P̃t+1) + β2(1− ρ)2α(1− α)EtJt+2(P̃t+2)

+β3(1− ρ)3α2(1− α)EtJt+3(P̃t+3) + · · · .

We also have a similar equation for Jt+1(P̃t+1) and then

Jt(P̃t)− β(1− ρ)Jt+1(P̃t+1)

= −Xt +
Z

1− β(1− ρ)α
P̃t −

Zβ(1− ρ)α

1− β(1− ρ)α
EtP̃t+1.

By linearizing it, we have

JĴt(P̃t)− Jβ(1− ρ)EtĴt+1(P̃t+1) (22)

= −XX̂t +
ZP̃

1− β(1− ρ)α
ˆ̃Pt −

ZP̃β(1− ρ)α

1− β(1− ρ)α
Et

ˆ̃Pt+1.

The value function for a retailer that is matched with a product and has a contract

P̃t at time t

V 1
t (P̃t) = ZB

t − ZP̃t + βEt

[
α(1− ρ)V 1

t+1(P̃t) + (1− α)(1− ρ)V 1
t+1(P̃t+1) + ρV 0

t+1

]
.

where V 0 is the value function for a retailer without a match. Let qt be the probability

that the retailer finds a producer. The value function for a retailer without a match is

V 0
t = βEt

[
qtV

1
t+1(P̃t+1) + (1− qt)V

0
t+1

]
.
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Iterating V 1
t (P̃t)− V 0

t forward, we have

V 1
t (P̃t)− V 0

t = Qt(P̃t) = ZB
t − Z

1− β(1− ρ)α
P̃t+

αβ(1− ρ)Z

1− β(1− ρ)α
EtP̃t+1

+ β(1− ρ− qt)EtQt+1(P̃t+1),

Qt(P̃t)− β(1− ρ)EtQt+1(P̃t+1) = ZB
t − Z

1− β(1− ρ)α
P̃t+

αβ(1− ρ)Z

1− β(1− ρ)α
EtP̃t+1

− qtβEtQt+1(P̃t+1),

By linearizing it, we have

QQ̂t(P̃t)−Qβ(1− ρ)EtQ̂t+1(P̃t+1)

= ZBẐB
t − ZP̃

1− β(1− ρ)α
ˆ̃Pt +

ZP̃αβ(1− ρ)

1− β(1− ρ)α
Et

ˆ̃Pt+1 − βQq
[
EtQ̂t+1(P̃t+1) + q̂t

]
,

QQ̂t(P̃t)−Qβ(1− ρ)EtQ̂t+1(P̃t+1) (23)

= ZBẐB
t − ZP̃

1− β(1− ρ)α
ˆ̃Pt +

ZP̃αβ(1− ρ)

1− β(1− ρ)α
Et

ˆ̃Pt+1 − βQq
(
θ̂t + κ̂t

)
,

where we use a free entry condition and

Q̂t(P̃t) = Ĵt(P̃t), (24)

q̂t − ŝt = θ̂t.

Then, by subtracting Eq. (22) multiplied by 1− b from Eq. (23) multiplied by b, we

have

ZP̃

1− β(1− ρ)α
ˆ̃Pt (25)

=
ZP̃αβ(1− ρ)

1− β(1− ρ)α
Et

ˆ̃Pt+1 − bβqQ
(
θ̂t + κ̂t

)
+ (1− b)XX̂t + bZBẐB

t ,

since a free entry condition and

bQ = (1− b)J,

due to a nash bargaining. Form Eq. (20) and Eq. (25), we can derive Phillips curve.
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Also, by summing up Eq. (22) and Eq. (23), we finally have

JEtĴt+1(P̃t+1)

= β(1− ρ)JEtĴt+2(P̃t+2)− bβQq
(
Etθ̂t+1 + Etκ̂t+1

)
+ bZBEtẐ

B
t+1 − bXEtX̂t+1,

θ̂t = β

[
1− ρ− (1− b)q

1 + θγ

θγ

]
Etθ̂t+1

+ β
1 + θγ

θγ
[1− ρ− (1− b)q] Etκ̂t+1 −

1 + θγ

θγ
κ̂t (26)

− β(1− ρ)
1 + θγ

θγ
Etχ̂t+1 +

1 + θγ

θγ
χ̂t +

bZB

J

1 + θγ

θγ
EtẐ

B
t+1 −

bX

J

1 + θγ

θγ
EtX̂t+1,

where we use bQ = (1− b)J and Eq. (21).

C.3 Closed System of Economy

A closed economy consists of six equations after linearization, Eq. (17), Eq. (18), Eq.

(19), Eq. (20), Eq. (25), and Eq. (26) for six variables, ˆ̃Pt, P̂t, θ̂t, N̂t, M̂t, and ût.

In an estimation for parameters, we use these six equations including parameters and

steady state values. Steady state values are simultaneously determined by estimation by

estimated parameters.
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