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Abstract. This paper advocates that power improvement based on the cross-fit variance es-

timator, proposed by Mikusheva and Sun (2022), is generally applicable to other econometric

inference problems, where the statistics of interest are constructed by quadratic forms. We con-

sider consistent specification testing for regression models, overidentifying restriction testing for

linear instrumental variable regression models with many weak instruments, and parameter hy-

pothesis testing with many weak instruments, develop the cross-fit variance estimators for those

test statistics, and show that the resulting test statistics exhibit improved power properties.

Numerical examples illustrate attractive finite sample properties of our cross-fitting approach.

1. Introduction

In a seminal paper, Newey and Robins (2018) introduced the cross-fitting approach to estimate
functionals of nuisance functions, which cover various semiparametric econometric problems, to
achieve faster remainder rates. Their key idea is to estimate the nuisance functions by using
leave-one-out estimators, which eliminates “own observation” bias components contained in the
conventional plug-in semiparametric estimators. Kline, Saggio and Sølvsten (2020) employed
the cross-fitting approach to estimate quadratic forms of slope parameters for regression models
with unrestricted heteroskedasticity, and showed that their cross-fit estimator exhibits excellent
theoretical and finite sample properties even when the number of regressors grows in proportion to
the number of observations. In a recent insightful paper, Mikusheva and Sun (2022) adopted the
cross-fitting approach to estimate a variance component for their Anderson-Rubin type statistic
to conduct inference on structural parameters in linear instrumental variable regression models
with many weak instruments. Notable findings by Mikusheva and Sun (2022) are that the “own
observation” bias term will inflate the limit of the conventional variance component under the
alternative hypothesis and that their cross-fit variance estimator can circumvent such inflated
variance to improve power properties of their Anderson-Rubin type test.

This paper advocates that Mikusheva and Sun’s (2022) idea of power improvement by the
cross-fit variance estimator is generally applicable to other econometric inference problems, where
the statistics of interest are constructed by quadratic forms. In particular, we consider (i)
consistent specification testing for regression models, (ii) overidentifying restriction testing for
linear instrumental variable regression models with many weak instruments, and (iii) parameter
hypothesis testing with many weak instruments, develop the cross-fit variance estimators for
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those test statistics, and show that the resulting test statistics exhibit improved power properties.
For (i) and (ii), we consider the test statistics by Sun and Li (2006) and Chao et al. (2014),
respectively, and conduct analogous bias corrections as Kline, Saggio and Sølvsten (2020) and
Mikusheva and Sun (2022). For (iii), which is also studied by Mikusheva and Sun (2022), we
consider the jackknife Lagrange multiplier (JLM) test statistic by Matsushita and Otsu (2022).
Indeed, due to its more complicated form, the bias correction approach by Mikusheva and Sun
(2022) is not directly applicable, and we develop an alternative cross-fit variance estimator by
introducing an additional leave-one-out operation.

This paper is organized as follows. Section 2 studies the cross-fit variance estimation for
specification testing. In Section 3, we consider instrumental variable regression with many weak
instruments for testing overidentifying restrictions (Section 3.1) and parameter hypothesis testing
(Section 3.2). Sections 4 and 5 illustrate finite sample properties of our cross-fitting approach.

2. Specification test for regression model

We first consider consistent specification testing of regression models. Let {yi, xi}ni=1 be a
random sample of (y, x) ∈ R × RG. We wish to test whether the linear regression model is
correctly specified:

H0 : P{E[y|x] = γ′0x} = 1 for some γ0 ∈ Γ,

against H1 : H0 is false. This section considers a consistent specification test proposed by Sun
and Li (2006), which is a modified version of Hong and White (1995) to avoid a non-zero centering
term. Let b(x) be a K-dimensional vector of basis functions of x ∈ RG, where G is fixed but
K = Kn grows with the sample size n. Define an n × K matrix B = (b(x1), . . . , b(xn))

′ and
P = B(B′B)−1B′ whose (i, j)-th element is denoted by Pij . Let γ̂ be a consistent estimator of
γ0 under H0 (typically the OLS estimator) and ûi = yi − γ̂′xi be the residual. The specification
test statistic by Sun and Li (2006) is written as

T =
K−1/2

∑n
i=1

∑
j ̸=i Pij ûiûj√

V̂
, (2.1)

where V̂ is an estimator of the variance V(K−1/2
∑n

i=1

∑
j ̸=i Pij ûiûj) of the numerator defined

as

V̂ =
2

K

n∑
i=1

∑
j ̸=i

P 2
ij û

2
i û

2
j .

This test statistic is constructed based on the fact that E[eE[e|x]] ≥ 0 for e = y − E[y|x]
with equality holding if and only if H0 is true. The numerator of T is a sample analog of
E[eE[e|x]] using a series estimator for the conditional mean E[e|x]. Sun and Li (2006) showed
that T d→ N(0, 1) under H0, and T p→ +∞ under H1. Moreover, they established the consistency
of the variance estimator V̂ − V

p→ 0 under H0, where V = 2
K

∑n
i=1

∑
j ̸=i P

2
ijE[e2i |xi]E[e2j |xj ].

The naive variance estimator V̂ is a natural sample counterpart for the population target V
under the null hypothesis because ei = yi − γ′0xi under H0. However, using V̂ may cause some
loss in the power property. To see this point, suppose γ̂ converges in probability to a pseudo
true value γ∗ under H1, and the conditional mean θ0(x) = E[y|x] is well approximated by a basis
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expansion α′
∗b(x) for the projection coefficients α∗ = E[b(x)b(x)′]−1E[b(x)y]. The residual ûi can

be decomposed as
ûi = ∆i + ei + ρi,

where ∆i = α′
∗b(xi) − γ′∗xi is a drift component under the alternative H1, ei = yi − θ0(xi) is a

mean zero stochastic error, and ρi = θ0(xi)−α′
∗b(xi)− (γ̂−γ∗)′xi is an asymptotically negligible

component under suitable conditions. Based on this decomposition, the naive variance estimator
V̂ is written as

V̂ =
2

K

n∑
i=1

∑
j ̸=i

P 2
ij(∆i + ei + ρi)

2(∆j + ej + ρj)
2,

which involves a term of order up to Op

(
1
K

∑n
i=1

∑
j ̸=i P

2
ij∆

2
i∆

2
j

)
. Under global misspecification

with larger values of ∆i’s, this positive bias term in V̂ tends to be large, and the power of Sun and
Li’s (2006) test using T will deteriorate. One way to reduce this bias component is to employ
a cross-fitting approach introduced by Newey and Robins (2018), Kline, Saggio and Sølvsten
(2020), and Mikusheva and Sun (2022). In particular, we adapt Mikusheva and Sun’s (2022)
cross-fit variance estimator for a quadratic form with a double summation to the present setup.

Let M = I − P , Mij be the (i, j)-th element of M , and mi be the i-th column of M . We
propose to estimate the variance term V by the following cross-fit estimator:

V̂cf =
2

K

n∑
i=1

∑
j ̸=i

P 2
ij

MiiMjj +M2
ij

{ûi(m′
iû)}{ûj(m′

j û)},

where û = (û1, . . . , ûn)
′. It should be noted that the matrices P and M are constructed by

the regressor matrix B for series estimation. The division by MiiMjj + M2
ij is due to the

fact that E[ei(m′
ie)ej(m

′
je)|X] = (MiiMjj +M2

ij)E[e2i |xi]E[e2j |xj ] under independence of {ei}ni=1

conditionally on X = (x1, . . . , xn)
′. The following theorem establishes consistency of V̂cf for V .

Theorem 1. Consider the setup of this section. Assume that (i) for every K, there is a nonsin-
gular matrix Q such that the smallest eigenvalue of E[Qb(x)b(x)′Q′] is bounded away from zero
uniformly in K, (ii) there is a sequence of constants {ζK} satisfying supx∈RG ||b(x)|| ≤ ζK for all
K such that ζ2KK/n→ 0 and K → ∞ as n→ ∞, (iii) {yi, xi}ni=1 is iid and E[||(yi, xi)||6] <∞,
(iv) {ei}ni=1 is mutually independent conditional on X, and (v) γ̂ − γ0 = Op(n

−1/2) under H0.
Then under H0,

V̂cf − V
p→ 0.

Assumptions (i) and (ii) are standard assumptions employed by Sun and Li (2006) as well.
Sun and Li (2006) required that the fourth conditional moment is bounded, but Assumption (iii)
imposes a higher moment condition due to cross-fitting. The mutual independence in Assumption
(iv) is needed for the cross-fitting E[ei(m′

ie)ej(m
′
je)|X] to be valid as argued above. Assumption

(v) is satisfied with the OLS estimator, for example.

This theorem guarantees that Tcf =
K−1/2

∑n
i=1

∑
j ̸=i Pij ûiûj√

V̂cf

d→ N(0, 1) under H0, i.e., the both

statistics T and Tcf have the identical asymptotic null distribution. On the other hand, under the
alternative hypothesis, the variance estimators V̂ and V̂cf exhibit different asymptotic properties.
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The rationale of our variance estimator V̂cf can be explained as follows. Consider again the
decomposition ûi = ∆i + ei + ρi with ∆i = α′

∗b(xi) − γ′∗xi under the alternative H1. As far as
the basis functions b(x) contain x as a subvector, it holds m′

i∆ = 0 for ∆ = (∆1, . . . ,∆n)
′, and

the cross-fit variance estimator satisfies

V̂cf =
1

K

n∑
i=1

∑
j ̸=i

P 2
ij

MiiMjj +M2
ij

{(∆i + ei + ρi)(m
′
i(e+ ρ))}{(∆j + ej + ρj)(m

′
j(e+ ρ))},

which only involves a term of order up to Op

(
1
K

∑n
i=1

∑
j ̸=i

P 2
ij

MiiMjj+M2
ij
∆i∆j

)
. Therefore, when

∆i’s take larger values under H1, V̂cf tends to be smaller than V̂ and the associated test statistic
Tcf is expected to be more powerful than T .

3. Statistical inference with many weak instruments

In this section, we redefine the notation and consider the instrumental variable regression
model:

yi = β′xi + ui,

xi = Π′zi + vi, (3.1)

for i = 1, . . . , n, where yi is a scalar dependent variable, xi is a G-dimensional vector of endoge-
nous regressors, zi is a K-dimensional vector of instruments, ui and vi are error terms, and β

and Π are G × 1 and K × G dimensional parameters, respectively. We are concerned with the
setup of many weak instruments, where Π may decay with the sample size n and the number
of instruments K may grow with n (although we suppress dependence of Π and K on n). Let
Z = (z1, . . . , zn)

′, P = Z(Z ′Z)−1Z ′, M = I − P , and Pij and Mij be the (i, j)-th element of P
and M , respectively.

3.1. Overidentifying restriction test. We first study the overidentifying restriction test statis-
tic proposed by Chao et al. (2014):

J =

∑n
i=1

∑
j ̸=i Pij ûiûj√
Φ̂

+K,

where ûi = yi − β̂′xi, β̂ is an estimator for β, and

Φ̂ =
1

K

n∑
i=1

∑
j ̸=i

P 2
ij û

2
i û

2
j .

The form of the test statistic J is close to that of the specification test statistic T we saw in the
previous section. Chao et al. (2014) showed that Φ̂ is a consistent estimator for the variance
component of the numerator in J , which is Φ = 1

K

∑n
i=1

∑
j ̸=i P

2
ijE[u2i ]E[u2j ].

Let mi be the i-th column of M . In this setup, we propose the following cross-fit variance
estimator for Φ:

Φ̂cf =
1

K

n∑
i=1

∑
j ̸=i

P 2
ij

MiiMjj +M2
ij

{ûi(m′
iû)}{ûj(m′

j û)}.
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This estimator is similar to the cross-fit variance estimator proposed by Mikusheva and Sun
(2022) for parameter hypotheses testing. In contrast to theirs, we need to use the residual
ûi = yi − β̂′xi instead of ui = yi − β′0xi for the hypothetical value β0 to be tested.

The consistency of our cross-fit variance estimator Φ̂cf is obtained as follows.

Theorem 2. Assume that (i) {ui, vi}ni=1 is a sequence of independent random variables with
mean zero, and {zi}ni=1 is a non-random sequence, (ii) there exists a constant C such that
maxi ∥Π′zi∥2 ≤ C, maxi E[|vi|6] ≤ C, and maxi E[|ui|6] ≤ C, (iii) there exists a constant δ
such that Pii ≤ δ < 1 for all i, and (iv) β̂ p→ β.

Then under the model in (3.1),
Φ̂cf − Φ

p→ 0.

Assumptions (i) and (iii) are standard. Mikusheva and Sun (2022) do not impose maxi ∥Π′zi∥2 ≤
C, but we need this in Assumption (ii) because our statistic J involves an estimator β̂ instead
of the fixed hypothetical value. Assumption (iv) is satisfied with the JIVE, HLIML, and HFUL
estimators by Hausman et al. (2012) under suitable conditions (see their Theorem 1).

To see how the cross-fitting works for Φ̂cf , notice that the residual is written by ûi = (z′iΠ +

v′i)∆+ ui with ∆ = β− β̂, and the variance estimator proposed by Chao et al. (2014) is written
as

Φ̂ =
1

K

n∑
i=1

∑
j ̸=i

P 2
ij{(z′iΠ+ v′i)∆ + ui}2{(z′jΠ+ v′j)∆ + uj}2,

which involves a term of order up to Op

(
1
K

∑n
i=1

∑
j ̸=i P

2
ij(z

′
iΠ∆)2(z′jΠ∆)2

)
. In contrast, our

proposed cross-fit variance estimator is written as

Φ̂cf =
1

K

n∑
i=1

∑
j ̸=i

P 2
ij

MiiMjj +M2
ij

{((z′iΠ+v′i)∆+ui)(m
′
i(V∆+u))}{((z′jΠ+v′j)∆+uj)(m

′
j(V∆+u))},

which involves a term of order up to Op

(
1
K

∑n
i=1

∑
j ̸=i

P 2
ij

MiiMjj+M2
ij
(z′iΠ∆)(z′jΠ∆)

)
. Notice that

∆ does not converge to 0 in probability under the alternative hypothesis of Chao et al. (2014).
If the degree of misspecification is large, which results in large |∆|, Φ̂cf tends to be smaller than
Φ̂. Hence the test statistic based on Φ̂cf is expected to be more powerful than J .

3.2. Parameter hypothesis test. We next consider the JLM test statistic by Matsushita and
Otsu (2022) for testing the parameter hypothesis H0 : β = b against H1 : β ̸= b, that is

S = (u′0P
∗X)Ψ̂−1(X ′P ∗u0),

where u0 = (u01, . . . , u0n)
′, u0i = yi − x′ib, P

∗ is defined as P ∗
ij = Pij for i ̸= j and P ∗

ii = 0 for all
i, and

Ψ̂ = X ′P ∗Σ0P
∗X +

n∑
i=1

n∑
j=1

xix
′
ju0iu0jP

∗2
ij ,
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with Σ0 = diag(u201, . . . , u
2
0n). As shown in Matsushita and Otsu (2022), Ψ̂ is a valid estimator

for the variance component

Ψ =
n∑

i,j,k,i ̸=k,j ̸=k

E[xiPiku
2
0kPkjx

′
j |Z] +

n∑
i=1

∑
j ̸=i

E[xix′ju0iu0jP 2
ij |Z],

to guarantee S d→ χ2
G under H0. It should be noted that the variance term Ψ takes a more

complicated form than the ones in the previous section or Mikusheva and Sun (2022), so it is
not trivial how to construct a cross-fit estimator for Ψ.

As an unbiased estimator of Ψ, we propose the following cross-fit variance estimators

Ψ̂cf,1 =
n∑

i,j,k,i ̸=k,j ̸=k

xiPik
ũ0ku0k
Mkk

Pkjx
′
j +

n∑
i=1

n∑
j=1

xix
′
ju0iu0jP

∗2
ij ,

Ψ̂cf,2 =
n∑

i,j,k,i ̸=k,j ̸=k

xiPik
ũ0ku0k
Mkk

Pkjx
′
j +

n∑
i=1

∑
j ̸=i

xix̃
′
j

ū
(j)
0i u0j

MiiMjj
P 2
ij ,

where ũ0k =
∑n

l=1Mklu0l, x̃′j =
∑n

k=1Mjkx
′
k, and ū

(j)
0i =

∑
m ̸=j Mimu0m. The difference be-

tween Ψ̂cf,1 and Ψ̂cf,2 is that Ψ̂cf,2 has the “leave-one-out” cross-fit term ū
(j)
0i , which does not

appear in Mikusheva and Sun’s (2022) cross-fit variance estimator for their heteroskedasticity
robust Anderson-Rubin type statistic. Indeed a “usual” cross-fit estimator using ũi instead of
u
(j)
0i is biased because the moments of v2i u

2
0j remain for i ̸= j. Our leave-one-out cross-fitting

successfully removes these terms, and ensures Ψ̂cf,2 to be unbiased.
As shown in Appendix C, our cross-fit estimators Ψ̂cf,1 and Ψ̂cf,2 are unbiased:

E[Ψ̂cf,1|Z] = E[Ψ̂cf,2|Z] = Ψ. (3.2)

Also by adapting the argument in Matsushita and Otsu (2022), we can show that for q = 1, 2,

Scf,q = (u′0P
∗X)Ψ̂−1

cf,q(X
′P ∗u0)

d→ χ2
G,

under H0.
To see how the cross-fitting works for Ψ̂cf,1, notice that we can write u0i = z′iΠ∆+ ηi, where

ηi = ui+v
′
i∆ under the alternative H1 : β = b+∆. Then the first term of the variance component

of S can be written as
n∑

i,j,k,i ̸=k,j ̸=k

E[xiPik(z
′
kΠ∆+ ηk)

2Pkjx
′
j |Z].

On the other hand, the first term of the conditional mean E[Ψ̂cf,1|Z] for our cross-fit estimator
is characterized as

n∑
i,j,k,i ̸=k,j ̸=k

E
[
xiPikηk(z

′
kΠ∆+ ηk)Pkjx

′
j

∣∣Z] .
Then by the similar argument as we saw in the previous sections, when ∆i’s take larger values
under H1, Ψ̂cf,1 tends to be smaller than Ψ̂ and the resulting test statistic Scf is expected to be
more powerful than S. Similar comments apply to Ψ̂cf,2.
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4. Simulation

4.1. Specification testing. We first consider specification testing discussed in Section 2. Based
on Tripathi and Kitamura (2003), we consider two data generating processes

DGP 1 : yi = β0 + β1xi + ui,

DGP 2 : yi = β0 + β1xi +
c√
2π

exp(−(xi − 2.5)2) + ui,

where β0 = β1 = 1, log xi ∼ N(0, 1) with 5% upper tail truncation, and the structural error ui
is specified as ui = εi

√
0.1 + 0.2xi + 0.3x2i with εi ∼ N(0, 1) independently from xi. The linear

regression model is correctly specified under DGP 1 and misspecified under DGP 2, where we
control the magnitude of misspecification by the value of c. The sample size is set as n = 400.
We employ cubic splines as basis functions b(x), and its dimension is set to K = ⌈n1/3⌉ = 8. We
focus on the rejection frequencies at a nominal 5% significance level of Sun and Li’s (2006) test
statistic T in (2.1) and our proposed statistic Tcf , which replaces V̂ in (2.1) with the cross-fit
variance estimator V̂cf . The number of Monte Carlo replications in each experiment is 1000.

The null rejection frequencies for T and Tcf are 3.1% and 4.5%, respectively under DGP 1.
We investigate the power properties using DGP 2, and the results are reported in Table 1. This
table shows that Tcf is more powerful than T for different values of c.

Table 1. Estimated powers under DGP 2
c T Tcf

1.5 9.5% 12.0%
2.0 19.7% 23.9%
2.5 33.3% 35.4%
3.0 47.4% 49.7%
3.5 64.5% 65.5%
4.0 80.5% 81.0%

4.2. Structural parameter hypothesis testing. We next consider parameter hypothesis test-
ing on a structural parameter in an instrumental variable regression model discussed in Section
3.2. We mostly follow the simulation design by Matsushita and Otsu (2022). The data generating
process is specified as

yi = βxi + ui,

xi = z′iπ + vi,

where π = (d, . . . , d)′ and zi = (z1i, z
2
1i, z

3
1i, z

′
2i)

′ with z1i ∼ N(0, 1) and z2i ∼ N(0, IK−4). The
error term is generated by

(ui, vi) = ((1 + ϕz21i)ε1i, ρui +
√

1− ρ2ε2i),

where ε1i and ε2i are independently drawn from N(0, 1). We set n = 200 for the sample size in
all cases, and set β = γ = 1, ρ = 0.2, and ϕ = 0.2. Note that the error terms are heteroskedastic.
The number of instruments is K = 30. For each Monte Carlo replication, we set the value of d
to fix the value of the concentration parameter δ2 = π′ZZ′π

V ar(vi)
. For each concentration parameter
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value δ2 = 60, 30, and 10, we calculate the powers of the tests for (i) the heteroskedasticity robust
version of Anderson-Rubin type test with the naive variance estimator (AR), (ii) the AR test
with the cross-fit variance estimator by Mikusheva and Sun (2022) (cross-AR), (iii) the jackknife
Lagrange multiplier test by Matsushita and Otsu (2022) (JLM), and (iv) the JLM test with the
proposed cross-fit variance estimators Ψ̂cf,1 and Ψ̂cf,2 (cross-JLM and cross-JLM*, respectively).
The number of Monte Carlo replications in each experiment is 1000.

Figures 4.1–4.3 display the power curves at the nominal 5% significance level. From these
figures, we find that: (i) cross-JLM and cross-JLM* carry the same feature of JLM’s power
improvement for small |∆| compared with cross-AR, (ii) cross-JLM and cross-JLM* improve
the power property of JLM not only for large values of |∆| but also for small |∆| as shown in
Figures 4.2 and 4.3, (iii) when identification is strong or moderate, cross-JLM and cross-JLM*
outperform other methods in terms of local power as shown in Figures 4.1 and 4.2, and (iv)
the leave-one-out cross-fit feature of cross-JLM* does not exhibit significant improvement from
cross-JLM.

These results for the power properties naturally lead to the question whether the test inversion
of cross-JLM yields a shorter confidence interval. We compare the coverage probability and
median length of the confidence intervals based on cross-AR, JLM, and cross-JLM in Table
4.2. “Infinite CI” reports the frequency that the length of the confidence interval exceeds the
predetermined length, 10. From Table 4.2, we find that (i) cross-JLM tends to have the shorter
confidence interval than the other two when the identification is strong or moderate, and (ii)
cross-AR exhibits fewer infinite-length confidence intervals than the other two due to its excellent
power performance for the distant alternatives.

Figure 4.1. Power curves: δ2 = 60.
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Figure 4.2. Power curves: δ2 = 30.

Figure 4.3. Power curves: δ2 = 10.
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Table 2. Coverage probability and median length of confidence intervals
Coverage Median length Infinite CI

δ2 = 60
cross-AR 97.8% 1.22 0.2%

JLM 95.4% 0.82 2.3%
cross-JLM 94.8% 0.75 0.5%

δ2 = 30
cross-AR 96.7% 2.34 18.8%

JLM 96.2% 2.65 35.5%
cross-JLM 95.8% 1.75 26.9%

δ2 = 10
cross-AR 98.4% 10.0 70.1%

JLM 98.5% 10.0 85.0%
cross-JLM 98.3% 10.0 80.0%

5. Illustrations based on Angrist and Krueger (1991)

Angrist and Krueger (1991) is a canonical empirical example of many instrumental variables,
where the returns to education are estimated by regressions of the log weekly wage on the year of
schooling with many instruments, such as the quarter of birth (QOB), year of birth (YOB), and
state of birth (SOB) dummy variables from the 1980 US census of 329,509 men born in 1930–39.
To assess performance of the proposed cross-fit JLM test in a more empirically relevant setting,
we conduct another simulation study that preserves the structure of Angrist and Krueger’s (1991)
data considered by Angrist and Frandsen (2022) and Mikusheva and Sun (2022). For a detailed
description of this simulation exercise, see Mikusheva and Sun (2022, pp.2684–2685).

First we investigate power properties of cross-AR, JLM, and cross-JLM. To vary identification
strength, we vary the sample size of the simulated data to be 1.5%, 1%, and 0.5% of the original
sample size, which correspond to strong, moderate, and weak identification, respectively, as
noted by Mikusheva and Sun (2022). We also allow that the number of available instruments to
vary according to the simulated sample size. The number of Monte Carlo replications in each
experiment is 1000. Figures 5.1-5.3 display the power curves at the nominal 5% significance
level. We find similar patterns as in the previous simple Monte Carlo exercise: (i) cross-JLM
carries the same feature of JLM’s power improvement for small |∆| compared with cross-AR, (ii)
cross-JLM improves the power property of JLM for large values of |∆|, but the improvements
are small for small |∆| as shown in 5.2 and 5.3.

Table 3 shows the results for the confidence intervals. We find that (i) in terms of the median
lengths, JLM and cross-JLM have much shorter confidence intervals than cross-AR, but (ii) cross-
AR exhibits fewer infinite-length confidence intervals than the other two due to its excellent power
performance for the distant alternatives. Our results suggest that the proposed cross-JLM test
can be a useful complement to the existing cross-AR by Mikusheva and Sun (2022).
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Figure 5.1. Power curves under the setting of simulation design by AF22

Figure 5.2. Power curves under the setting of simulation design by AF22
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Figure 5.3. Power curves under the setting of simulation design by AF22

Table 3. Coverage probability and median length of confidence intervals
Coverage Median length Infinite CI

n = 4923, k = 154
cross-AR 95.0% 1.14 0.1%

JLM 95.7% 0.61 1.1%
cross-JLM 94.9% 0.60 0.7%

n = 3209, k = 135
cross-AR 97.5% 1.61 11.7%

JLM 96.4% 1.08 20.0%
cross-JLM 96.0% 1.1 19.5%

n = 1599, k = 111
cross-AR 97.9% 9.95 50.0%

JLM 98.2% 10.0 65.5%
cross-JLM 97.1% 10.0 62.7%

We close this section with an empirical illustration for the original Angrist and Krueger’s (1991)
dataset. In Table 4, we apply cross-AR, JLM, and cross-JLM to construct the 95% confidence
sets using 180 and 1530 instruments as in Mikusheva and Sun (2022). In this application, the
confidence sets based on JLM and cross-JLM are narrower than those based on cross-AR. This
difference may be attributed to the better power property of the JLM and cross-JLM tests for
small values of |∆| as illustrated in the simulation study above. In this illustration, the cross-JLM
confidence interval is slightly longer than the JLM confidence interval.
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Table 4. 95% confidence interval using Angrist and Krueger (1991) data

cross-AR JLM cross-JLM
180 instruments [0.008, 0.201] [0.067, 0.133] [0.067, 0.133]
1530 instruments [−0.047, 0.202] [0.025, 0.123] [0.013, 0.124]

Appendix A. Proof of Theorem 1

Hereafter C means a generic positive constant. To simplify the presentation, we provide the
proof for the case of G = 1 (i.e., x is scalar). Let ei = yi − E[yi|xi]. Under H0, ûi is written as

ûi = yi − xiγ̂ = xi(γ0 − γ̂) + ei,

and we have

{ûi(m′
iû)}{ûj(m′

j û)} = (γ0 − γ̂)2xi(m
′
ie)xj(m

′
je) + (γ0 − γ̂)ei(m

′
iei)xj(m

′
je)

+(γ0 − γ̂)ei(m
′
ie)ej(m

′
je) + ei(m

′
ie)ej(m

′
je).

Let P̃ 2
ij =

P 2
ij

MiiMjj+M2
ij

and X = (x1, . . . , xn)
′. Note that V can be written as

V =
2

K

∑
i=1

∑
j ̸=i

P̃ 2
ijE[{ei(m′

ie)}{ej(m′
je)}|X].

Thus, the estimation error can be decomposed as

V̂cf − V =
2

K

∑
i=1

∑
j ̸=i

P̃ 2
ij{ei(m′

ie)ej(m
′
je)− E[ei(m′

ie)ej(m
′
je)|X]}

+(γ0 − γ̂)2
2

K

∑
i=1

∑
j ̸=i

P̃ 2
ijxi(m

′
ie)xi(m

′
je)

+(γ0 − γ̂)
2

K

∑
i=1

∑
j ̸=i

P̃ 2
ij{xi(m′

iei)ej(m
′
je) + ei(m

′
ie)xj(m

′
je)}.

By Mikusheva and Sun (2022, Lemma 2), the first term is op(1). Since γ̂−γ0 = Op(n
−1/2) under

H0 (Assumption (iv)), it is sufficient for the conclusion to show that

T1 :=
2

K

∑
i=1

∑
j ̸=i

P̃ 2
ijxi(m

′
ie)xi(m

′
je) = op(n), (A.1)

T2 :=
2

K

∑
i=1

∑
j ̸=i

P̃ 2
ijxi(m

′
iei)ej(m

′
je) = op(n

1/2). (A.2)

We first show (A.1). Let ϕij = xi(m
′
ie)xj(m

′
je). Then we have

E[T 2
1 ] =

4

K2
E

 n∑
i=1

∑
j ̸=i

P̃ 4
ijE[ϕ2ij | X]

+
4

K2
E

 n∑
i=1

∑
j ̸=i

∑
k ̸=i,j

P̃ 2
ijP̃

2
kiE[ϕijϕki|X]


+

4

K2
E

 n∑
i=1

∑
j ̸=i

∑
k ̸=i,j

P̃ 2
ijP̃

2
kjE[ϕijϕkj |X]

+
2

K2
E

 n∑
i=1

∑
j ̸=i

∑
k ̸=i,j

∑
l ̸=i,j,k

P̃ 2
ijP̃

2
klE[ϕijϕkl|X]


=: A1 +A2 +A3 +A4.
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Note that ϕij is decomposed as

ϕij = xixj(MiiMjjeiej +MiiMije
2
i +MijMjje

2
j +M2

ijeiej)

+xixj

∑
a̸=i,j

(MiiMjaeiea +MijMjaejea +MjjMiaejea +MijMiaeiea)


+xixj

∑
a̸=i,j

∑
b ̸=i,j

MiaMjbeaeb


=: ϕaij + ϕbij + ϕcij .

Assumption (iii) implies that E[(ϕaij)2|X] ≤ Cx2ix
2
j . By applying the same argument as in Lemma

1 below, it holds that E[(ϕbij)2|X] and E[(ϕcij)2|X] are bounded by Cx2ix
2
j . Thus, we have

E[ϕ2ij |X] ≤ Cx2ix
2
j .

Let λmin(A) be the minimum eigenvalue of a matrix A. P̃ 2
ij can be bounded as

P̃ 2
ij =

P 2
ij

MiiMjj +M2
ij

≤
P 2
ij

(1− Pii)(1− Pjj)
≤

P 2
ij

{1− λ−1
min(n

−1B′B)ζ2Kn
−1}2

, (A.3)

where the first inequality follows from the properties of the matrices P and M , and the second
inequality follows from

Pii ≤ λ−1
min(n

−1B′B)n−1max
i

||b(xi)||2 ≤ λ−1
min(n

−1B′B)n−1ζ2K , (A.4)

by using Assumptions (i)-(ii). Furthermore, Mikusheva and Sun (2022, Lemma S1.3 (b)) implies
n∑

i=1

∑
j ̸=i

P 4
ijx

2
ix

2
j ≤

n∑
i=1

n∑
j=1

P 2
ijx

2
ix

2
j ≤

n∑
i=1

x4i . (A.5)

Combining these results, A1 is bounded as

A1 ≤ 4C

K2
E

{1− λ−1
min(n

−1B′B)ζ2Kn
−1}−4

n∑
i=1

∑
j ̸=i

P 4
ijx

2
ix

2
j


≤ 4C

K2

n∑
i=1

E[{1− λ−1
min(n

−1B′B)ζ2Kn
−1}−4x4i ] = O(nK−2),

where the first inequality follows from (A.3), the second inequality follows from (A.5), and the
equality follows from the Hölder inequality and Assumptions (i)-(iii).

For A2, the Cauchy-Schwarz inequality implies

|E[ϕijϕik|X]| ≤ Cx2ix
2
j .

Also Mikusheva and Sun (2022, Lemmas S1.1 (iii) and S1.3 (e)) imply
n∑

i=1

n∑
j=1

n∑
k=1

P 2
ijP

2
kix

2
ix

2
j ≤ K

n∑
i=1

x4i .
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By applying the same argument as A1, we have

A2 ≤
4C

K

n∑
i=1

E[{1− λ−1
min(n

−1B′B)ζ2Kn
−1}−4x4i ] = O(nK−1).

Similarly, we have A3 = O(nK−1).
For A4, note that

E[ϕijϕkl|X] = E[(ϕaij + ϕbij + ϕcij)(ϕ
a
kl + ϕbkl + ϕckl)|X].

Since the indices in A4 are distinct, E[ϕqijϕrkl|X] = 0 for q ̸= r. Also we have E[ϕsijϕskl|X] ≤
C|xixjxkxl| for s ∈ {a, b, c}. By Mikusheva and Sun (2022, Lemma S1.3 (b)),

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

P 2
ijP

2
kl|xixjxkxl| ≤

(
n∑

i=1

x2i

)2

.

Combining these results yields

A4 =
2

K2
E

 n∑
i=1

∑
j ̸=i

∑
k ̸=i,j

∑
l ̸=i,j,k

P̃ 2
ijP̃

2
kl{E[ϕaijϕakl|X] + E[ϕbijϕbkl|X] + E[ϕcijϕckl|X]}


≤ C

K2

n∑
i=1

n∑
j=1

E[{1− λ−1
min(n

−1B′B)ζ2Kn
−1}−4x2ix

2
j ] = O(n2K−2).

Therefore, the Markov inequality yields T1 = Op(max{n1/2K−1, n1/2K−1/2, nK−1}) and As-
sumption (ii) guarantees (A.1).

We next show (A.2). Let ψij = xi(m
′
ie)ej(m

′
je). Then we have

E[T 2
2 ] =

1

K2
E

 n∑
i=1

∑
j ̸=i

P̃ 4
ijE[ψ2

ij |X]

+
1

K2
E

 n∑
i=1

∑
j ̸=i

P̃ 4
ijE[ψijψji|X]


+

1

K2
E

 n∑
i=1

∑
j ̸=i

∑
l ̸=i,j

P̃ 2
ijP̃

2
ilE[ψijψil|X]

+
1

K2
E

 n∑
i=1

∑
j ̸=i

∑
l ̸=i,j

P̃ 2
ijP̃

2
jlE[ψijψjl|X]


+

1

K2
E

 n∑
i=1

∑
j ̸=i

∑
k ̸=i,j

P̃ 2
ijP̃

2
kiE[ψijψki|X]

+
1

K2
E

 n∑
i=1

∑
j ̸=i

∑
k ̸=i,j

P̃ 2
ijP̃

2
kjE[ψijψkj |X]


+

1

K2
E

 n∑
i=1

∑
j ̸=i

∑
k ̸=i,j

∑
l ̸=i,j,k

P̃ 2
ijP̃

2
klE[ψijψkl|X]


=: C1 + C2 + C3 + C4 + C5 + C6 + C7.
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Note that ψij is decomposed as

ψij = xiej(MiiMjjeiej +MiiMije
2
i +MijMjje

2
j +M2

ijeiej)

+xiej

∑
a̸=i,j

(MiiMjaeiea +MijMjaejea +MjjMiaejea +MijMiaeiea)


+xiej

∑
a̸=i,j

∑
b ̸=i,j

MiaMjbeaeb


=: ψa

ij + ψb
ij + ψc

ij .

Assumption (iii) implies that E[(ψa
ij)

2|X] ≤ Cx2i . By applying the same argument as in Lemma
1 below, it holds that E[(ψb

ij)
2|X] and E[(ψc

ij)
2|X] are bounded by Cx2i . Thus, we have

E[ψ2
ij |X] ≤ Cx2i .

Furthermore, Mikusheva and Sun (2022, Lemma S1.3 (a)) implies
n∑

i=1

n∑
j=1

P 4
ijx

2
i ≤

√
K

n∑
i=1

x2i .

Combining these results with (A.4), C1 is bounded as

C1 ≤ 2C

K2
E

{1− λ−1
min(n

−1B′B)ζ2Kn
−1}−4

n∑
i=1

∑
j ̸=i

P 4
ijx

2
i


≤ 2C

K2

√
K

n∑
i=1

E[{1− λ−1
min(n

−1B′B)ζ2Kn
−1}−4x2i ] = O(nK−3/2).

For C2, notice that the Cauchy-Schwarz inequality implies

|E[ψijψji|X]| ≤ C|xixj |.

Also Mikusheva and Sun (2022, Lemma S1.3 (b)) implies
n∑

i=1

n∑
j=1

P 4
ij |xixj | ≤

n∑
i=1

x2i .

By applying the same argument as C1, we have

C2 ≤ 2C

K2
E

{1− λ−1
min(n

−1B′B)ζ2Kn
−1}−4

n∑
i=1

n∑
j=1

P 4
ij |xixj |


≤ 2C

K2

n∑
i=1

E[{1− λ−1
min(n

−1B′B)ζ2Kn
−1}−4x2i ] = O(nK−2).

For C3, notice that the Cauchy-Schwarz inequality implies

|E[ψijψil|X]| ≤ Cx2i ,
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and we also have
n∑

i=1

n∑
j=1

n∑
l=1

P 2
ijP

2
ilx

2
i ≤ K

n∑
i=1

x2i .

Combining these results, C3 is bounded as

C3 ≤ 2C

K
E

{1− λ−1
min(n

−1B′B)ζ2Kn
−1}−4

n∑
i=1

∑
j ̸=i

∑
l ̸=i,j

P 2
ijP

2
ilx

2
i


≤ 2C

K

n∑
i=1

E[{1− λ−1
min(n

−1B′B)ζ2Kn
−1}−4x2i ] = O(nK−1).

For C4, the Cauchy-Schwarz inequality implies

|E[ψijψjl|X]| ≤ C|xixj |,

and Mikusheva and Sun (2022, Lemma S1.3 (b)) implies
n∑

i=1

n∑
j=1

n∑
l=1

P 2
ijP

2
jl|xi||xj | ≤

n∑
i=1

x2i .

Combining these results, C4 is bounded as

C4 ≤
2C

K2
E

{1− λ−1
min(n

−1B′B)ζ2Kn
−1}−4

n∑
i=1

∑
j ̸=i

∑
l ̸=i,j

P 2
ijP

2
jl|xixj |


≤ 2C

K2

n∑
i=1

E[{1− λ−1
min(n

−1B′B)ζ2Kn
−1}−4x2i ] = O(nK−2).

For C5, the Cauchy-Schwarz inequality implies

|E[ψijψki|X]| ≤ C|xixk|,

and Mikusheva and Sun (2022, Lemma S1.3 (e)) implies
n∑

i=1

n∑
j=1

n∑
k=1

P 2
ijP

2
ki|xi||xk| ≤

√
K

n∑
i=1

x2i .

Combining these results, C5 is bounded as

C5 ≤ 2C

K2
E

{1− λ−1
min(n

−1B′B)ζ2Kn
−1}−4

n∑
i=1

∑
j ̸=i

∑
k ̸=i,j

P 2
ijP

2
ki|xixk|


≤ 2C

K2

√
K

n∑
i=1

E[{1− λ−1
min(n

−1B′B)ζ2Kn
−1}−4x2i ] = O(nK−3/2).

For C6, the Cauchy-Schwarz inequality implies

|E[ψijψkj |X]| ≤ (E[ψ2
ij |X])1/2(E[ψ2

kj |X])1/2 ≤ C|xixk|,
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and Mikusheva and Sun (2022, Lemma S1.3 (e)) implies
n∑

i=1

n∑
j=1

n∑
k=1

P 2
ijP

2
kj |xi||xk| ≤ K

n∑
i=1

x2i .

Combining these results, C6 is bounded as

C6 ≤ 2C

K2
E

{1− λ−1
min(n

−1B′B)ζ2Kn
−1}−4

n∑
i=1

n∑
j=1

n∑
k=1

P 2
ijP

2
kj |xi||xk|


≤ 2C

K

n∑
i=1

E[{1− λ−1
min(n

−1B′B)ζ2Kn
−1}−4x2i ] = O(nK−1).

For C7, note that

E[ψijψkl|X] = E[(ψa
ij + ψb

ij + ψc
ij)(ψ

a
kl + ψb

kl + ψc
kl)|X].

Since the indices in C7 are distinct, E[ψq
ijψ

r
kl|X] = 0 for q ̸= r. Also we have E[ψs

ijψ
s
kl|X] =

C|xixk| for s ∈ {a, b, c}. Applying Mikusheva and Sun (2022, Lemma S1.3 (a)) twice yields
n∑

i=1

∑
j ̸=i

∑
k ̸=i,j

∑
l ̸=i,j,k

P 2
ijP

2
kl|xixk| ≤ K

n∑
i=1

x2i .

Combining these results, we have

C7 =
2

K2
E

 n∑
i=1

∑
j ̸=i

∑
k ̸=i,j

∑
l ̸=i,j,k

P̃ 2
ijP̃

2
kl{E[ψa

ijψ
a
kl|X] + E[ψb

ijψ
b
kl|X] + E[ψc

ijψ
c
kl|X]}


≤ 2C

K2
E

{1− λ−1
min(n

−1B′B)ζ2Kn
−1}−4

n∑
i=1

∑
j ̸=i

∑
k ̸=i,j

∑
l ̸=i,j,k

P 2
ijP

2
kl|xixk|


≤ 2C

K

n∑
i=1

E[{1− λ−1
min(n

−1B′B)ζ2Kn
−1}−4x2i ] = O(nK−1).

Therefore, the Markov inequality yields T2 = Op(max{n1/2K−3/2, n1/2K−1, n1/2K−1/2}) and
Assumption (ii) guarantees (A.2).

Since (A.1) and (A.2) are verified, we obtain the conclusion.

Appendix B. Proof of Theorem 2

The following lemma, an adaptation of Mikusheva and Sun (2022, Lemma 2), is used in our
proof.

Lemma 1. Suppose that ξi = (ξ
(1)
i , ξ

(2)
i , ξ

(3)
i )′ for i = 1, . . . , n are independent mean zero random

vectors with maxi E|ξi|6 ≤ C. Let ηij = {ξ(1)i (m′
iξ

(2))}{ξ(1)j (m′
jξ

(3))}, where mi is the i-th column
of M . Then

max
i,j

E[η2ij ] ≤ C1, max
i,j,k

|E[ηijηik]| ≤ C2,

for some finite constants C1 and C2.
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Proof of Lemma 1: Notice that ηij can be decomposed into ηij = A1,ij+A2,ij+A3,ij , where

A1,ij = MiiMjjξ
(1)
i ξ

(2)
i ξ

(1)
j ξ

(3)
j +MiiMijξ

(1)
i ξ

(2)
i ξ

(3)
i ξ

(1)
j +MijMjjξ

(1)
i ξ

(1)
j ξ

(2)
j ξ

(3)
j +M2

ijξ
(1)
i ξ

(3)
i ξ

(1)
j ξ

(2)
j ,

A2,ij = ξ
(1)
i ξ

(1)
j

∑
a̸=i,j

{MiiMjaξ
(2)
i ξ(3)a +MijMjaξ

(2)
j ξ(3)a +MjjMiaξ

(3)
j ξ(2)a +MijMiaξ

(3)
i ξ(2)a },

A3,ij = ξ
(1)
i ξ

(1)
j

∑
a̸=i,j

∑
b ̸=i,j

MiaMjbξ
(2)
a ξ

(3)
b .

For the first statement, it suffices to show that maxi,j E[A2
s,ij ] is bounded for each s = 1, 2, 3. The

moment condition maxi E|ξi|6 ≤ C implies that maxi,j E[A2
1,ij ] is bounded. From the proof of

Mikusheva and Sun (2022, Lemma 2), we have boundedness of maxi,j E[A2
2,ij ] and maxi,j E[A2

3,ij ].
Therefore, the first statement follows. The second statement follows from the Cauchy-Schwarz
inequality.

Proof of Theorem 2. For simplicity, we present the proof for the case of G = 1. Let P̃ 2
ij =

P 2
ij

MiiMjj+M2
ij

, u = (u1, . . . , un)
′, and v = (v1, . . . , vn)

′. Since Φ = 1
K

∑n
i=1

∑
j ̸=i P̃

2
ijE[ui(miu)

′uj(m
′
ju)]

by Mikusheva and Sun (2022), Φ̂cf − Φ can be decomposed as

Φ̂cf − Φ =
1

K

n∑
i=1

∑
j ̸=i

P̃ 2
ij

[
{ui(m′

iu)uj(m
′
ju)− E[ui(m′

iu)uj(m
′
ju)]}

+(β̂ − β)4xi(m
′
iv)xj(m

′
jv)

+(β̂ − β)3{xi(m′
iv)xj(m

′
ju) + xi(m

′
iv)uj(m

′
jv) + xi(m

′
iu)xj(m

′
jv) + ui(m

′
iv)xj(m

′
jv)}

+(β̂ − β)2

{
xi(m

′
iv)uj(m

′
ju) + xi(m

′
iu)xj(m

′
ju) + xi(m

′
iu)uj(m

′
jv) + ui(m

′
iv)xj(m

′
ju)

+ui(m
′
iv)uj(m

′
jv) + ui(m

′
iv)uj(m

′
ju) + ui(m

′
iu)xj(m

′
jv)

}
+(β̂ − β){xi(m′

iu)uj(m
′
ju) + ui(m

′
iu)xj(m

′
ju) + ui(m

′
iu)uj(m

′
jv)}

]
. (B.1)

By Mikusheva and Sun (2022, Lemma 2), the first term of (B.1) satisfies

1

K

n∑
i=1

∑
j ̸=i

P̃ 2
ij{ui(m′

iu)uj(m
′
ju)− E[ui(m′

iu)uj(m
′
ju)]} = op(1).

It remains to show that the other terms of (B.1) are op(1). Hereafter, we present the proof for
the second term. The other terms are handled in the same manner.

Since β̂ p→ β, it is sufficient to show

E

 1

K

n∑
i=1

∑
j ̸=i

P̃ 2
ijϕij

2 = O(1), (B.2)
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where ϕij = xixj(m
′
iv)(m

′
jv). From ϕij = ϕji, this can be decomposed as

E

 1

K

n∑
i=1

∑
j ̸=i

P̃ 2
ijϕij

2 =
2

K2

n∑
i=1

∑
j ̸=i

P̃ 4
ijE[ϕ2ij ] +

2

K2

n∑
i=1

∑
j ̸=i

∑
k ̸=i,j

P̃ 2
ijP̃

2
kiE[ϕijϕki]

+
2

K2

n∑
i=1

∑
j ̸=i

∑
k ̸=i,j

P̃ 2
ijP̃

2
kjE[ϕijϕkj ] +

1

K2

n∑
i=1

∑
j ̸=i

∑
k ̸=i,j

∑
l ̸=i,j,k

P̃ 2
ijP̃

2
klE[ϕijϕkl]

=: A1 +A2 +A3 +A4.

Hereafter, C means a generic constant. ForA1, the leading term of E[ϕ2ij ] is E[{vi(m′
iv)vj(m

′
jv)}2],

and Lemma 1 with ηij = vi(m
′
iv)vj(m

′
jv) implies maxi,j E[{vi(m′

iv)vj(m
′
jv)}2] ≤ C. Thus, we

obtain maxi,j E[ϕ2ij ] ≤ C. From Assumption (ii), we have

P̃ 2
ij ≤

P 2
ij

(1− Pii)(1− Pjj)
≤

P 2
ij

(1− δ)2
, (B.3)

Therefore, the order of A1 is

A1 ≤
2C

K2(1− δ)2

n∑
i=1

∑
j ̸=i

P 4
ij ≤

2C

K(1− δ)2
= O(K−1),

where the first inequality follows from (B.3), and the second inequality follows from Chao et al.
(2012, Lemma B1 (i)).

Similarly, for A2, the leading term of E[ϕijϕik] is E[{vi(m′
iv)vj(m

′
jv)}{vi(m′

iv)vk(m
′
kv)}] is

bounded by Lemma 1 with ηij = vi(m
′
iv)vj(m

′
jv) and ηik = vi(m

′
iv)vk(m

′
kv), which implies

maxi,j,k |E[ϕijϕik]| ≤ C. Therefore, the order of A2 is

A2 ≤
2C

K2(1− δ)4

n∑
i=1

∑
j ̸=i

∑
k ̸=i,j

P 2
ijP

2
ki ≤

2C

K(1− δ)4
= O(K−1),

where the first inequality follows from (B.3), and the second inequality follows from Chao et al.
(2012, Lemma B1 (i)). We can show that A3 = O(K−1) in the same manner.

Finally, for A4, the leading term of E[ϕijϕkl] is E[{vi(m′
iv)vj(m

′
jv)}{vk(m′

kv)vl(m
′
lv)}]. Let us

decompose {vi(m′
iv)vj(m

′
jv)} = B1,ij +B2,ij +B3,ij as in Lemma 1, where

B1,ij = MiiMjjv
2
i v

2
j +MiiMijv

3
i vj +MijMjjvjv

3
j +M2

ijv
2
i v

2
j ,

B2,ij = vivj
∑
a̸=i,j

(MiiMjaviva +MijMjavjva +MjjMiavjva +MijMiaviva),

B3,ij = vivj
∑
a̸=i,j

∑
b̸=i,j

MiaMjbvavb.

Notice that B2,ij and B3.ij are exactly the same as the terms appeared in the proof of Mikusheva
and Sun (2022, Lemma 2) (correspond to “A2,ij” and “A3,ij”, respectively, in their notation).
Since the indices in A4 are distinct, E[Bq,ijBr,kl] = 0 for q ̸= r. Also |E[B1,ijB1,kl]| ≤ C by the
moment condition. Combining these results, we have

A4 =
1

K2

n∑
i=1

∑
j ̸=i

∑
k ̸=i,j

∑
l ̸=i,j,k

P̃ 2
ijP̃

2
kl(E[A1,ijA1,kl] + E[A2,ijA2,kl] + E[A3,ijA3,kl]) = O(K−1),
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where the orders of the last two terms are shown by Mikusheva and Sun (2022, Lemma 2).

Appendix C. Proof of unbiasedness of Ψ̂cf,1 and Ψ̂cf,2 in (3.2)

Unbiasedness of Ψ̂cf,1 follows from that of Ψ̂cf,2. For the first term of Ψ̂cf,2, observe that
n∑

i,j,k,i ̸=k,j ̸=k

E
[
xiPik

ũ0ku0k
Mkk

Pkjx
′
j

∣∣∣∣Z]

=
n∑

i,j,k,i ̸=k,j ̸=k

E
[
xiPik

Mkku
2
0k

Mkk
Pkjx

′
j

∣∣∣∣Z]+ n∑
i,j,k,i ̸=k,j ̸=k

E
[
xiPik

∑
l ̸=kMklu0lu0k

Mkk
Pkjx

′
j

∣∣∣∣Z]︸ ︷︷ ︸
=0 because E[u0lu0k|Z]=0

=
n∑

i,j,k,i ̸=k,j ̸=k

E[xiPiku
2
0kPkjx

′
j |Z],

where the first equality follows from the definition ũ0k =
∑n

l=1Mklu0l. Thus, the (conditional)
expectation of the first term of Ψ̂cf,2 coincides with the one of Ψ.

For the second term of Ψ̂cf,2, decompose

E

 n∑
i=1

∑
j ̸=i

xix̃
′
j

ū0iu0j
MiiMjj

P 2
ij

∣∣∣∣∣∣Z


= E

 n∑
i=1

∑
j ̸=i

(Π′zi + vi)

(
n∑

k=1

Mjk(z
′
kΠ+ v′k)

)
(
∑

m̸=j Mimu0m)u0j

MiiMjj
P 2
ij

∣∣∣∣∣∣Z


= E

 n∑
i=1

∑
j ̸=i

(Π′zi + vi)

(
n∑

k=1

Mjkv
′
k

)
(
∑

m̸=j Mimu0m)u0j

MiiMjj
P 2
ij

∣∣∣∣∣∣Z


= E

 n∑
i=1

∑
j ̸=i

vi

(
n∑

k=1

Mjkv
′
k

)
(
∑

m ̸=j Mimu0m)u0j

MiiMjj
P 2
ij

∣∣∣∣∣∣Z


= E

 n∑
i=1

∑
j ̸=i

vi(Mjjv
′
j)
(Miiu0i)u0j
MiiMjj

P 2
ij

∣∣∣∣∣∣Z


+E

 n∑
i=1

∑
j ̸=i

vi(Mjjv
′
j)
(
∑

m ̸=j,iMimu0m)u0j

MiiMjj
P 2
ij

∣∣∣∣∣∣Z


︸ ︷︷ ︸
=0 because u0mcan be isolated

+E

 n∑
i=1

∑
j ̸=i

vi

∑
k ̸=j

Mjkv
′
k

 (Miiu0i)u0j
MiiMjj

P 2
ij

∣∣∣∣∣∣Z


︸ ︷︷ ︸
=0 because u0jcan be isolated

+E

 n∑
i=1

∑
j ̸=i

vi

∑
k ̸=j

Mjkv
′
k

 (
∑

m̸=j,iMimu0m)u0j

MiiMjj
P 2
ij

∣∣∣∣∣∣Z


=:
n∑

i=1

∑
j ̸=i

E[viv′ju0iu0jP 2
ij |Z] + C.
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where C = E
[∑n

i=1

∑
j ̸=i vi

(∑
k ̸=j Mjkv

′
k

)
(
∑

m ̸=j,i Mimu0m)u0j

MiiMjj
P 2
ij

∣∣∣Z], the first equality follows
from the definitions of ū0i, xi, and x̃j , and the second and third equalities follow from E[u0mu0j |
Z] = 0 for m ̸= j. Since the first term of the last line is identical to the second term of Ψ, it
remains to show C = 0. Finally, we have

C = E

 n∑
i=1

∑
j ̸=i

vi (Mjivi)

(∑
m ̸=j,iMimu0m

)
u0j

MiiMjj
P 2
ij

∣∣∣∣∣∣Z


︸ ︷︷ ︸
=0 because u0j can be isolated

+E

 n∑
i=1

∑
j ̸=i

vi

∑
k ̸=i,j

Mjkv
′
k


(∑

m ̸=j,iMimu0m

)
u0j

MiiMjj
P 2
ij

∣∣∣∣∣∣Z


︸ ︷︷ ︸
=0 because vi and u0j can be isolated

= 0,

and we obtain (3.2).
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