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Abstract. This paper proposes an empirical likelihood inference method for the Oaxaca-Blinder

decompositions. In contrast to the conventional Wald statistic using the delta method, our approach

circumvents the linearization errors and estimation of the variance terms. Furthermore, the shape

of the resulting empirical likelihood confidence set is determined flexibly by data. Simulation results

illustrate usefulness of the proposed inference method.

1. Introduction

Since the seminal works by Oaxaca (1973) and Blinder (1973), the Oaxaca-Blinder (hereafter,
OB) decomposition has been widely used in empirical economic analyses to investigate differences
in mean outcomes between groups (see, For tin, Lemieux and Firpo, 2011, for an overview). The
OB decompositions are typically obtained as products of (differences of) the OLS estimators and
averages of regressors. Statistical inference on the OB decompositions is usually conducted based
on their standard errors, which are derived by the delta method; see, Oaxaca and Ransom (1998)
and Jann (2008) for the cases of non-stochastic and stochastic regressors, respectively.

To fix the idea, consider a typical form of the OB decomposition θ̂ = X̄ ′B(β̂A− β̂B), where β̂A and
β̂B are the OLS estimators of the groups A and B, respectively, and X̄B is the sample mean of the
regressors of the group B. As shown in Jann (2008), the standard error of θ̂ is obtained by applying
the delta method and estimating the variance components Var(X̄B), Var(β̂A), and Var(β̂B). As is
well known in the econometrics literature (e.g., Gregory and Veal, 1985), the t or Wald test based
on the delta method is not invariant to formulations of nonlinear parameter hypotheses and the
approximation errors by the delta method may not be negligible in finite samples. Intuitively, even
though X̄B and β̂A− β̂B are well approximated by normal distributions, their product θ̂ may be far
from normal in finite samples.

To address this issue on the conventional inference method, we adapt the method of empirical like-
lihood by Owen (1988) to conduct inference on the OB decomposition parameters. In particular, we
construct the empirical likelihood functions of two groups that involve their regression parameters,
and then combine these likelihood functions to impose the null hypothesis on the OB decomposition
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parameters of interest. Our empirical likelihood ratio statistic converges to the chi-squared distribu-
tion at the true parameter value so that we can conduct hypothesis testing and interval estimation by
using the chi-squared critical values. Although our empirical likelihood inference is computationally
more expensive than the conventional inference based on the t or Wald statistic, there are several
advantages for our method. First, the proposed empirical likelihood inference does not rely on the
delta method so that it is free from the linearization error and invariant to formulations of nonlinear
hypotheses. Second, since the empirical likelihood ratio is asymptotically pivotal, there is no need
to estimate the variance components, such as Var(X̄B), Var(β̂A), and Var(β̂B) for θ̂. Third, the
empirical likelihood ratio-based confidence set is range preserving and transformation respecting.
Fourth, in contrast to the Wald-type confidence set whose shape is constrained to be symmetric
around the point estimate, the shape of the empirical likelihood ratio-based confidence set is nat-
urally determined by data. Finally, the empirical likelihood inference can easily accommodate side
information on data, such as knowledge on some moments or additional instruments.

To illustrate advantages of the proposed method, we conduct a simulation study to investigate the
size and power properties. Our simulation results show that our empirical likelihood test for the OB
decomposition parameters shows similar size properties as the conventional t test across different
setups. On the other hand, the proposed empirical likelihood and conventional t tests exhibit rather
different power properties. In particular, when the error term follows an asymmetric distribution
such as log-normal, then the empirical likelihood test shows higher power for the negative side
which contains zero and is economically more important. This result illustrates that our empirical
likelihood inference can be a useful complement to the conventional one.

2. Main Result

Let {YAi, XAi}nA
i=1 and {YBi, XBi}nB

i=1 be two independent and identically distributed (iid) samples
for the groups A and B, where YA and YB are scalar outcome variables and XA and XB are k-
dimensional regressors. For each group, consider the regression model

Y` = X ′`β` + ε`,

for ` = A,B, where β` is a k-dimensional vector of parameters and the error term ε` is independent
of X` and has zero mean. One common way to decompose the difference of the means of the group
outcomes is

E[YA]− E[YB] = (E[XA]− E[XB])′βA + E[XB]′(βA − βB),

where the first term is the outcome difference explained by the difference in the regressors, and the
second term is the unexplained part (often attributed to discrimination). Hereafter, we focus on
inference for the second term θ = E[XB]′(βA−βB). However, our empirical likelihood approach can
be easily extended to conduct inference on the first term or other decompositions as far as they are
expressed by (nonlinear) functions of regression parameters and means of regressors.
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Let X̄` be the sample mean of X`, and β̂` be the OLS estimator for the regression of Y` on X`.
Then the point estimator of θ is given by θ̂ = X̄ ′B(β̂A − β̂B). By applying the delta method, Jann
(2008) suggested to construct the t-ratio by estimating the asymptotic variance of θ̂ as

V̂ar(θ̂) = X̄ ′B{V̂ar(β̂A) + V̂ar(β̂B)}X̄B + (β̂A − β̂B)′V̂ar(X̄B)(β̂A − β̂B).

We note that this variance estimator is derived via linearization of θ̂ = X̄ ′B(β̂A − β̂B) around
(X̄B, β̂A, β̂B) = (E[XB], βA, βB) and requires the variance estimators V̂ar(β̂A), V̂ar(β̂B), and V̂ar(X̄B).

This paper proposes an alternative inference method for θ = E[XB]′(βA−βB) based on empirical
likelihood. For the sample {YAi, XAi}nA

i=1 of the group A, by using the moment condition E[XA(YA−
X ′AβA)] = 0, the empirical likelihood function for βA is obtained as

`A(βA) = −2 max
{pAi}

nA
i=1

nA∑
i=1

log(nApAi), s.t. pAi ≥ 0,

nA∑
i=1

pAi = 1,

nA∑
i=1

pAiXAi(YAi−X ′AiβA) = 0.

By the Lagrange multiplier method, its dual form is written as

`A(βA) = 2 sup
λA

nA∑
i=1

log(1 + λ′AXAi(YAi −X ′AiβA)),

and we employ this dual form to compute `A(βA) in practice. We next construct the empirical
likelihood function for the sample {YBi, XBi}nB

i=1 of the group B. Since θ involves βB and µB = E[XB],
the empirical likelihood function for the group B is constructed as

`B(βB, µB) = −2 max
{pBj}

nB
j=1

nB∑
j=1

log(nBpBj), pBj ≥ 0,

nB∑
j=1

pBj = 1,

nB∑
j=1

pBj

[
XBi(YBi −X ′BiβB)

XBi − µB

]
= 0,

and its dual form is

`B(βB, µB) = 2 sup
λB

nB∑
j=1

log

(
1 + λ′B

[
XBi(YBi −X ′BiβB)

XBi − µB

])
.

By combining the empirical likelihood functions `A(βA) and `B(βB, µB), we obtain the (profile)
empirical likelihood function for θ as

L(θ) = min
(βA,βB ,µB):θ=µ′B(βA−βB)

{`A(βA) + `B(βB, µB)}.

The asymptotic property of L(θ) is obtained as follows.

Proposition. Suppose {YAi, XAi}nA
i=1 and {YBi, XBi}nB

i=1 are independent and identically distributed
(iid) sequences with finite fourth moments. Also, {YAi, XAi}nA

i=1 and {YBi, XBi}nB
i=1 are independent.

Then

L(θ)
d→ χ2

1,

as nA, nB →∞ with nA/nB → c ∈ (0,∞).
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This proposition can be shown as follows. First, by adapting the proof of Jing (1995, The-
orem 2) (i.e., replacing “Xi − µx” and “Yi − µy” in Jing (1995) with “XAi(YAi − X ′AiβA)” and

“

[
XBi(YBi −X ′BiβB)

XBi − µB

]
”, respectively), we obtain `A(βA) + `B(βB, µB)

d→ χ2
3k. Second, since

θ = µ′B(βA − βB) is a smooth function of (βA, βB, µB), the argument in Hall and LaScala (1990,
Theorem 2.1) applied to `A(βA) + `B(βB, µB) yields the conclusion.

This proposition shows that our empirical likelihood statistic L(θ) achieves asymptotic pivotalness
without estimating the variance components such as Var(X̄B), Var(β̂A), and Var(β̂B). Based on this
proposition, the 100(1−α)% empirical likelihood confidence set of θ is given by ECLIθ = {θ : L(θ) ≤
χ2
1,α}, where χ2

1,α is the (1− α)-th quantile of the χ2
1 distribution.

Although we focus on the unexplained (discrimination) part of decomposition, our method can
be applied to the other term of the twofold decomposition (X̄A− X̄B)′β̂A (explained or composition
effect). In addition, as Jann (2008) explained, there is a threefold decomposition where the overall
difference is decomposed of three components including an interaction term between the difference
of means and that of coefficients. Indeed, the twofold decomposition is the equivalent conversion
of the threefold one with introducing the benchmark coefficient (β̂A here). Again, we can build an
analogous inference method for the threefold decomposition with the empirical likelihood approach.

3. Simulation

We conduct a simulation study to check the size and power properties of our empirical likelihood
method in comparison to Jann’s (2008) t ratio and the delta method. As a simulation setup, we
consider

YAi = 7XAi + εAi, YBi = 5XBi + εBi,

where εgi ∼ N(0, 1) and Xgi and εgi are independent for g = A,B. For XAi and XBi, we consider the
cases of normal, χ2

3, and log-normal with mean 1 and variance 1. We also consider heteroskedastic
error terms εgi =

√
0.5 + 0.5X2

givgi with vgi ∼ N(0, 1). We are interested the OB decomposition
parameter θ = µ′B(βA − βB) = 2. The sample size is set as n = 100. The number of Monte Carlo
replications is 500 for both the size and power analyses.

We first compare the size of three methods: Jann’s t ratio (Jann), delta method (Delta), and
empirical likelihood (EL). The delta method included into comparison since previous research such
as Oaxaca and Ransom (1998) and Greene (2008) employs it to estimate the variance of the de-
composition estimators. The rejection frequencies at 5% significance level of the three methods are
presented in Table 1. There are no significant differences in the size properties among these methods.
This is true even for asymmetric distributions, such as χ2

3 and Log-normal, and heteroskedasticity.
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Table 1. Simulation result: Size
Jann Delta EL

Normal 0.06 0.06 0.062
χ2
3 0.064 0.064 0.064

Log-normal 0.086 0.086 0.072
Normal heteroskedastic 0.054 0.054 0.05
χ2
3 heteroskedastic 0.066 0.066 0.068

Log-normal heteroskedastic 0.11 0.11 0.096

We next compare the power of these methods by setting the null hypothesis H0 : θ = 2 + c

with c ∈ {−2.0,−1.9, . . . , 1.9, 2.0}. Since we are interested in the performance of our method (EL)
in the cases where the data are asymmetrically distributed, we present the power curves for the
cases of normal heteroskedastic and log-normal heteroskedastic errors in Figure 1. Although there
is no significant differences in the normal heteroskedastic case, EL performs better on the negative
side of the deviation in the log-normal heteroskedastic case. To illustrate this point, we draw the
empirical likelihood function L(θ) in Figure 2, where the horizontal line is the .95-th quantile of
the χ2

1 distribution used for the critical value. Due to the positive skewness of L(θ), the rejection
rate is higher on the left side of the true value θ = 2. We note that the left side contains zero (i.e.,
no discrimination in the OB decomposition parameter). Thus in this example, EL exhibits better
power properties than other methods to detect presence of discrimination. Overall EL can be a
useful complement to the conventional t ratio in this context.

Figure 1. Simulation result: Power
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Figure 2. Statistical Inference
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