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Abstract. We study the problem of weak instruments in a demand estimation of spatial price
competition models by Pinkse, Slade, and Brett (2002) (hereafter, PSB). Product characteristics
are included in price instruments and have correlation with prices through the markup. We check
whether product characteristics hold their identification power as the number of product grows
in analogy with random coefficient discrete choice approach investigated by Armstrong (2016).
The conventional weak instruments asymptotics do not work in PSB’s model because a series
estimation is nested in their two-stage least square estimator, and the number of endogenous
regressors (and instruments) also grows as the number of products grows. We provide two
asymptotic results that indicate the lack of inconsistency of PSB’s estimator.

1. Introduction

Economists utilize instruments to solve the simultaneity problem in demand estimation. Since
the influential study by Berry, Levinsohn, and Pakes (1995) (hereafter, BLP) for differentiated
product markets, many papers adopt product characteristics as price instruments, which correlate
with prices through the markup, especially through the market share of each product. However,
Armstrong (2016) shows that the market share of each product disappears fast enough as the
number of products grows in some demand models of BLP. Since the market share is a function of
the product characteristics, these instruments may lose their identifying power and, as a result,
lead to inconsistent estimates. Hence the markup formula plays a role of a drifting sequence as
in Staiger and Stock (1997).

This paper studies a weak instrument problem of a demand estimation of spatial price competi-
tion models by Pinkse, Slade, and Brett (2002) (hereafter, PSB) in which product characteristics
are included in price instruments. In PSB’s model, consumers’ demands are in a product space,
not in a product characteristic space, and they can consume more than one good. Since BLP
takes a random coefficient discrete choice approach, the demand model of PSB is considerably
different from that of BLP. Even under these differences, however, by rewriting the markup for-
mula induced by the Bertrand equilibrium play, one can see that this formula is a function of
the demand function of each product instead of the market share in BLP. Since the market size
is finite following the existing literature, we expect that the demand function decays to zero as
the number of products grows. Hence the instruments in PSB interact with price in a similar
way to BLP.
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PSB employ a semiparametric approach, and a series estimation is nested in their estimator.
In the just identified case, the estimation error of their two-stage least squares estimator ✓̂� ✓ is
denoted by  

1p
n

nX

i=1

ziw
0
i

!�1 
1p
n

nX

i=1

zivi

!
=: A�1

n bn,

where zi, wi, vi are vectors of instruments, regressors containing series expansion terms and ex-
ogenous variables, and regression and approximation errors, respectively. Notice that we cannot
apply conventional weak instruments asymptotics in Staiger and Stock (1997) since An and bn

are growing dimensions. Our first result characterizes the stochastic orders of each element of An

and bn. We find that these are not degenerate, and bn may diverge if the number of expansion
terms grows at a slower rate. Our second result provides an inconsistency result of ✓̂ given a
high-level assumption on the maximum eigenvalue of A0

nAn. For further developments of these
results, we need to exploit random matrix theory for sample covariance matrix in which elements
are not distributed independently and contain a drifting sequence.

2. Model and estimator

Our model follows that of PSB. There are n sellers of a differentiated product. For simplicity,
we assume that each firm sells one product. Let qi, pi, and yi be the demand, price, and product
characteristic for product i. The demand function for product i is given by

qi(p, y) = ai +
nX

j=1

(bijpj + cijyj).

where p = (p1, . . . , pn)0, y = (y1, . . . , yn)0, and ({ai}, {bij}, {cij}) are parameters to be estimated.
Suppose firms play the Bertrand pricing game given rival prices, i.e., firm i chooses pi to solve

max
pi

(pi � �MCi)qi(p, y)� Fi, (1)

where MCi and Fi are firm i’s marginal and fixed cost. The best response function of firm i is

pi = � 1

2�ii

0

@ai � bii�MCi +
X

j 6=i

bijpj +
nX

j=1

cijyj

1

A .

PSB estimated this best response function by employing a semiparametric approach. Let xi

be a dx-vector of MCi, finite subset of y, and other exogenous demand and cost variables. Also
let {e`(·)}1`=1 be a sequence of basis functions, {dij} be measures of proximity of firms i and j,
and  ̃i` =

P
j 6=i e`(dij)pj . Based on this notation, the semiparametric model considered by PSB

is written as

pi =
1X

`=1

↵̃` ̃i` + x0i� + ui (2)

=  0
i↵+ x0i� + vi,

2



where vi = ri + ui, ri =
P1

`=Ln+1 ↵̃` ̃i`, ↵ = (↵̃1, . . . , ↵̃Ln)
0, and

 i =

0

@
X

j 6=i

e1(dij)pj ,
X

j 6=i

e2(dij)pj , . . . ,
X

j 6=i

eLn(dij)pj

1

A
0

.

In our setup, the number of endogenous regressors Ln grows with the number of sellers n. Letting
wi = ( 0

i, x
0
i)
0 and ✓ = (↵0,�0)0, this model can be concisely written as pi = w0

i✓ + vi.
For this model, PSB proposed to estimate ✓ by the (semiparametric) two-stage least squares

based on Kn-dimensional vector of instruments zi. For simplicity, we focus on the just identified
case, i.e., Kn = Ln + dx. As in PSB, we adopt transformed variables of xi as instruments for
pi. Let zi = g(xi) be a Kn-dimensional vector-valued function of xi. Then the semiparametric
instrumental variable estimator for ✓ is written as

✓̂ =

 
nX

i=1

ziw
0
i

!�1 nX

i=1

zipi. (3)

This paper is concerned with the limiting behaviors of the estimator ✓̂ when the number of
products n increases to infinity under suitable conditions for the price competition models. To
achieve consistency results for ✓̂ to ✓, it is critical to guarantee sufficiently strong correlations
between pi’s contained in the regressors wi and xi generating the instruments zi. To understand
the nature of the problem, observe that the first-order condition of (1) can be written as

pi = �MCi �
qi(p, y)

bii
+ ui. (4)

Here MCi is assumed to be an exogenous regressor included in the regression model (2). Thus
we need to guarantee sufficiently strong correlation between the instruments zi = g(xi) and
markup qi(p, y)/bii. However, in the current setup, it is common to assume that the market
size is finite, i.e., limn!1

Pn
i=1 qi(p, y) < 1, which implies that qi(p, y) decays to zero as the

number of products n grows. Therefore, the markup qi(p, y)/bii may not have enough variations
to yield enough correlations with the instruments zi. This phenomenon is thoroughly studied in
Armstrong (2016) for the BLP model on differentiated product demands. Indeed he conjectured
may emerge in the current model by PSB (see, p. 1964 of Armstrong, 2016). In the next section,
we formally confirm his conjecture.

3. Large market asymptotics

We now study asymptotic properties of the instrumental variables estimator ✓̂ under the
large market asymptotics, the number of products n diverges to infinity. Based on the existing
literature, we impose the following assumptions of the demand function qi(p, y) and market size.

Assumption Q. (i) p limn!1
Pn

i=1 qi(y, p) < 1. (ii)
p
nmax1in qi(y, p)/b1ii

p! 0.

Assumption Q (i) says that the market size
Pn

i=1 qi(y, p) remains finite as the number of
products n diverges to infinity. This assumption implies that the demand qi(y, p) for each
product i decays to 0. Assumption Q (ii) requires that the decay rate of qi(y, p) normalized by

3



b1ii should be faster than n�1/2 uniformly over i. An analogous is employed by Armstrong (2016,
Theorem 1) for the BLP model.

We also impose some regularity conditions on the series expansion in (2).

Assumption S. (i) sup1in,`2N
P

j 6=i |e`(dij)| = O(1). (ii) max1in
P

j 6=i e`(dij)
2 = O(1) for

each ` 2 N. (iii) sup`2N |↵̃``�| < 1 for some � > 1.

Assumptions S (i) and (iii) are also employed by PSB (their assumptions (vi) and (vii), respec-
tively). Assumptions S (i) and (ii) are on the basis functions {e`(d)}`2N. When the supports of
{e`(d)}`2N are finite, these assumptions require that the number of non-zero elements of e`(dij)
for i, j = 1, . . . n should be finite. If the supports of {e`(d)}`2N are infinite, Assumptions S (i)
and (ii) require that e`(d) should decay fast enough as d ! 1. Assumption S (iii) can be un-
derstood as a smoothness condition for the function to be approximated by the series expansion.
Intuitively, larger � is associated with a smoother function.

Based on the above assumptions, we now study the asymptotic properties of the semiparamet-
ric instrumental variable estimator ✓̂. From (2) and (3), the estimation error of ✓̂ can be written
as

✓̂ � ✓ =

 
1p
n

nX

i=1

ziw
0
i

!�1 
1p
n

nX

i=1

zivi

!
=: A�1

n bn. (5)

There are two notable features in this expression. First, the matrix An is normalized by n�1/2,
instead of n�1 for the case of the conventional instrumental variable regression with strong
instruments. This normalization by n�1/2 for An is employed by Staiger and Stock (1997) for
the weak instruments asymptotics. As indicated in the last section, in our setup, the markup
qi(p, y)/bii (and thus wi) may not have enough correlations with the instruments zi, and hence we
adopt the analogous normalization. Second, in contrast to the conventional or weak instruments
asymptotic analysis in Staiger and Stock (1997), An is a Kn⇥Kn matrix and bn is a Kn⇥1 vector
so that both components have growing dimensions. In other words, we need to deal with the
problem of weak instruments for semiparametric or series estimators, where not only the number
of instruments Kn but also the number of endogenous regressors Ln grow with the sample size
n. Such an analysis is a substantial challenge in the econometrics literature.1

Although full development of the asymptotic theory for (5) by extending the random matrix
theory is beyond the scope of this paper, we can present two theoretical results to indicate lack
of consistency of the estimator ✓̂. The first proposition characterizes the stochastic orders of the
elements of An and bn.

Proposition 1. Suppose {pi, xi, zi}ni=1 is an i.i.d. triangular array, where each element has the
finite fourth moments, and Assumptions Q and S hold true. Then each element of An is of order
Op(1), and each element of bn is of order Op(max{1,

p
nL1��

n }).

1There are few papers tackle weak instruments in a nonparametric framework despite the problem’s importance.
Han (2020) analyzes this in a nonparametric estimation model of a triangular system. Freyberger (2017) pro-
vides positive testability results for the key identification condition in a nonparametric framework, completeness,
through the diameter of an identified set.
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This proposition says that the elements in An and bn do not degenerate, and bn may even
diverge when the Ln (and thus Kn) grows at a slower rate. Although this result is not enough
to characterize the stochastic order of the whole vector ✓̂ � ✓ = A�1

n bn, we can observe analo-
gous behaviors of the corresponding terms of An and bn for the case of the weak instruments
asymptotics in Staiger and Stock (1997).

Additionally we provide a lack of consistency result in terms of the Euclidean norm ||✓̂ � ✓||
under some high level assumption on the matrix An. Let �max(A) be the maximum eigenvalue
of a matrix A.

Proposition 2. Suppose {pi, xi, zi}ni=1 is an i.i.d. triangular array, where each element has the
finite fourth moments, and Assumptions Q and S hold true. If �max(AnA0

n)  Cn with probability
approaching one (w.p.a.1) and nL2�2�

n /Cn ! 0 for some Cn, then ||✓̂ � ✓|| p! +1.

This proposition provides sufficient conditions to induce inconsistency of the estimator ✓̂. The
additional condition nL2�2�

n /Cn ! 0 is analogous to Assumption (viii) in PSB (which requires
nL2�2�

n /⇣n ! 0 for a sequence {⇣n} associated with the minimum eigenvalue of
Pn

i=1 ziw
0
i).

In our setup, it is beyond the scope of this paper to characterize the upper bound Cn for the
maximum eigenvalue of the product matrix AnA0

n with growing dimension, which requires further
developments of the random matrix theory.

To illustrate this point, suppose that An is a Kn⇥Kn matrix of independent standard normal
random variables. Then Johnstone (2001, Theorem 1.1) showed that

�max(AnA0
n)� µn

�n

d! Tracy-Widom law of order 1,

where µn = k2n and �n = kn{(Kn � 1)�1/2 +K�1/2
n }1/3 for kn = (Kn � 1)1/2 +K1/2

n . Thus, in
this case, the upper bound Cn can be set as Kn. By Kn = Ln + dx, the additional condition
in Proposition 2 will be nL1�2�

n ! 0, which is satisfied when Ln grows fast enough and/or � is
large enough.

Finally, we mention how to test the null hypothesis H0 : ✓ = ✓0. In the conventional weak
identification framework, some asymptotically valid test statistics are proposed. For example,
the S-statistic in Stock and Wright (2000) takes the form

SKn(✓) :=
1p
n

nX

i=1

gi(✓)
0

"
1

n

nX

i=1

gi(✓)gi(✓)
0

#�1
1p
n

nX

i=1

gi(✓),

where gi(✓) = zi(pi � w0
i✓). If Kn = K is fixed, Stock and Wright (2000, Theorem 2) implies

that SK(✓) converges in distribution to �2
K . Then, applying the central limit theorem yields

Tn =
SKn(✓)�Knp

2Kn

d! N(0, 1).

Hence normalized SLn(✓) can be used for constructing an asymptotically valid hypothesis test.
However, we cannot use this statistic if we are interested in a subset of parameters like finite
dimensional parameter � in (2), not in the whole parameter ✓. Developing a framework for this
situation is beyond the scope our paper and left for future research.
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Appendix A. Mathematical appendix

A.1. Proof of Proposition 1. We first consider the matrix An. Without loss of generality,
we consider the (1, 1)-element of An, say A(1,1)

n . Also we assume E[z1i] = 0 to simplify the
presentation. By inserting the markup formula in (4), we can decompose

A(1,1)
n =

1p
n

nX

i=1

z1i
X

j 6=i

e1(dij)pj

=
1p
n

nX

i=1

X

j 6=i

z1ie1(dij)
qj
b1jj

+
1p
n

nX

i=1

X

j 6=i

z1ie1(dij)MCj� +
1p
n

nX

i=1

X

j 6=i

z1ie1(dij)uj

=: T1 + T2 + T3.

For T1, Assumptions Q (ii) and S (i) and the law of large numbers imply

|T1| 
(
p
n max

1jn

qj
b1jj

)0

@max
1in

X

j 6=i

|e1(dij)|

1

A 1

n

nX

i=1

|z1i| = op(1).

For T2, observe that

E[T 2
2 ] =

�2

n

nX

i=1

nX

i1=1

X

j 6=i

X

j1 6=i1

E[z1iz1i1MCjMCj1 ]e1(dij)e1(di1j1)

=
�2

n

nX

i=1

X

j 6=i

{E[z1iMCi]E[z1jMCj ] + E[z21i]E[MC2
j ]}e1(dij)2

 C1

n

nX

i=1

X

j 6=i

e1(dij)
2  C1 max

1in

X

j 6=i

e1(dij)
2 = O(1),

for some C1 > 0, where the inequality follows the assumption that z1i and MCi have the
finite fourth moments, and the last equality follows from Assumption S (ii). Thus, Chebyshev’s
inequality implies T2 = Op(1). For T3, let Ri = z1i

P
j 6=i e1(dij)uj so that T3 = n�1/2Pn

i=1Ri.
Note that E[Ri] = 0,

E[R2
i ] = E[z21i]

X

j 6=i

E[u2j ]e1(d1j)
2 = E[z21i]E[u2i ]

X

j 6=i

e1(d1j)
2,

and

Cov(R1, R2) =
X

j1 6=1

X

j2 6=2

E[z11z12uj1uj2 ]e1(d1j1)e1(d2j2)

=
X

j2 6=2

E[z11z12u2uj2 ]e1(d12)e1(d2j2) +
X

j1 6=1,2

X

j2 6=1,2

E[z11z12uj1uj2 ]e1(d1j1)e1(d2j2)

=
X

j2 6=2

E[z11z12u2uj2 ]e1(d12)e1(d2j2) +
X

j1 6=1,2

X

j2 6=1,2,j1

E[z11z12uj1uj2 ]e1(d1j1)e1(d2j2)

+
X

j1 6=1,2

E[z11z12u
2
j1 ]e1(d1j1)e1(d1j2)

= 0.
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Thus, we have

V ar(T3) =
1

n

nX

i=1

V ar(Ri) =
1

n

nX

i=1

E[R2
i ] =

1

n

nX

i=1

E[z21i]E[u2i ]
X

j 6=i

e1(d1j)
2

 C2 max
1in

X

j 6=i

e1(d1j)
2 = O(1),

for some C2 > 0, where the last equality follows from Assumption S (ii). Now Chebyshev’s
inequality implies T3 = Op(1). Combining these results, we obtain A(1,1)

n = Op(1).
We next consider the vector bn. Without loss of generality, we consider the first element of

bn, say

b(1)n =
1p
n

nX

i=1

z1iui +
1p
n

nX

i=1

z1iri =: T4 + T5.

For T4, the i.i.d. and finite fourth moments assumptions guarantees

E[T 2
4 ] =

1

n

nX

i=1

nX

j=1

E[z1iz1juiuj ] =
1

n

nX

i=1

E[z21iu
2
i ] = O(1).

Thus, T4 is Op(1). For T5, note that E[T 2
5 ] =

1
n

Pn
i=1

Pn
j=1E[z1iz1jrirj ] by the i.i.d. assumption,

and thus we have

E[T 2
5 ] =

1

n

nX

i=1

nX

j=1

1X

`=Ln+1

1X

`0=Ln+1

X

k 6=i

X

k0 6=j

E[z1iz1jpkpk0 ]↵̃`↵̃`0e`(dik)e`0(djk0)

 C3

n

nX

i=1

nX

j=1

1X

`=Ln+1

1X

`0=Ln+1

X

k 6=i

X

k0 6=j

|↵̃`||↵̃`0 ||e`(dik)||e`0(djk0)|

 C3n

0

@
1X

`=Ln+1

|↵̃`|

1

A
20

@ sup
1in,`2N

X

k 6=i

|e`(dik)|

1

A
2

 C4nL
2�2�
n

0

@ sup
1in,`2N

X

k 6=i

|e`(dik)|

1

A
2

= O(nL2�2�
n ), (6)

for some C3, C4 > 0, where the first inequality follows from the Cauchy-Schwarz inequal-
ity and finite fourth moments assumption, the third inequality follows from

P1
`=Ln+1 |↵̃`| 

P1
`=Ln+1C5`��  C5L2�2�

n for some C5 > 0 by using Assumption S (iii), and the last equal-
ity follows from Assumption S (i). Thus, Chebyshev’s inequality implies T5 = Op(

p
nL1��

n ).
Combining these results, we obtain b(1)n = Op(max{1,

p
nL1��

n }).

A.2. Proof of Proposition 2. Let �max(A) and �min(A) be the maximum and minimum eigen-
values of a matrix A, respectively. It is sufficient to show that Pr{(✓̂ � ✓)0(✓̂ � ✓)  M} ! 0 for
each M > 0. Take any M > 0. Note that

(✓̂ � ✓)0(✓̂ � ✓) = b0n(A
�1
n )0A�1

n bn � �min((A
�1
n )0A�1

n )b0nbn =
b0nbn

�max(AnA0
n)

,

where the last equality follows from

�min((A
�1)0A�1) = �min((AA

0)�1) =
1

�max(AA0)
,
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for any invertible matrix A. Thus, we have

Pr{(✓̂ � ✓)0(✓̂ � ✓)  M}  Pr

⇢
b0nbn

�max(AnA0
n)

 M

�

 Pr

⇢
b0nbn

�max(AnA0
n)

 M, �max(AnA
0
n)  Cn

�
+ Pr{�max(AnA

0
n) > Cn}

 Pr{b0nbn  CnM}+ o(1)  E[b0nbn]

CnM
+ o(1),

where the third inequality follows from the assumption �max(AnA0
n)  Cn w.p.a.1, and the

last inequality follows from Markov’s inequality. By using the definition bn = 1p
n

Pn
i=1 zivi =

1p
n

Pn
i=1 zi(ri + ui), we can decompose

E[b0nbn] =
1

n

nX

i=1

nX

j=1

E[z0izjrirj ] +
1

n

nX

i=1

nX

j=1

E[z0izjuiuj ] +
2

n

nX

i=1

nX

j=1

E[z0izjriuj ]

=: T1 + T2 + 2T3.

For T1, similar arguments to (6) in the proof of Proposition 1 yield

T1 =
1

n

nX

i=1

nX

j=1

E

2

4z0izj

0

@
1X

`=Ln+1

↵̃`

X

h 6=i

e`(dih)ph

1

A

0

@
1X

`=Ln+1

↵̃`

X

k 6=j

e`(djk)pk

1

A

3

5

 O(n)

0

@
1X

`=Ln+1

|↵̃`|

1

A
20

@ sup
1in,`2N

X

j 6=i

|e`(dij)|

1

A
2

= O(nL2�2�
n ),

where the inequality follows from the Cauchy-Schwarz inequality and finite fourth moments
assumption, and the second equality follows from Assumptions S (i) and (iii).

For T2, the i.i.d. assumption and Cauchy-Schwarz inequality imply

T2 =
1

n

nX

i=1

E[z0iziu
2
i ] 

p
E[||zi||4]

q
E[u4i ] = O(1).

For T3, observe that

T3 =
1

n

nX

i=1

nX

j=1

X

h 6=i

E[z0izjujph]
1X

`=Ln+1

↵̃`e`(dih)

=
1

n

nX

i=1

X

j 6=i

E[zi]
0E[zjujpj ]

1X

`=Ln+1

↵̃`e`(dij)

 C1

n

nX

i=1

X

j 6=i

1X

`=Ln+1

|↵̃`||e`(dij)|

 C1

0

@ sup
1in,`2N

X

j 6=i

|e`(dij)|

1

A

0

@
1X

`=Ln+1

|↵̃`|

1

A = O(L1��
n ),

for some C1 > 0, where the second equality follows from E[z0jzjuj ] = E[zjuj ] = 0, the first
inequality follows from the Cauchy-Schwarz inequality and finite fourth moments assumption,
and the last equality follows from Assumptions S (i) and (iii).
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Combining these results, E[b0nbn] = O(nL2�2�
n ), and thus

Pr{(✓̂ � ✓)0(✓̂ � ✓)  M}  O(nL2�2�
n /Cn).

Therefore, the conclusion follows by the assumption nL2�2�
n /Cn ! 0.
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