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Abstract. This paper follows up the sensitivity analysis by Andrews, Gentzkow and Shapiro
(2017) for biases in GMM estimators due to local violations of identifying assumptions, and
proposes complementary bias measures that are sensitive to different choices of GMM weight
matrices by considering a specific form of the local perturbation. Our method accommodates the
two-step and continuous updating GMM estimators with or without centering. The proposed
bias measures are illustrated by a consumption based asset pricing model using Japanese data.

1. Introduction

In a recent paper, Andrews, Gentzkow and Shapiro (2017) (hereafter, AGS) have introduced
a novel and practical measure of sensitivity of the GMM estimates for structural parameters
against local perturbations of different moments. More precisely, consider the GMM estimator
✓̂ = argmin✓ ĝ(✓)0Ŵ ĝ(✓) for the parameters ✓0, where ĝ(✓) is a vector of sample moments and
Ŵ is a weight matrix. Then AGS’s sensitivity of ✓̂ is defined as ⇤ = �(G0WG)�1G0W , where G

and W are probability limits of @ĝ(✓0)/@✓0 and Ŵ , respectively.
AGS showed that under local violation of the identifying assumption in the sense of

p
nĝ(✓0)

d!
g̃ for a random vector g̃ with non-zero mean, the asymptotic bias of the GMM estimator is
expressed as ⇤E[g̃]. Based on this, they advocated to report the estimate of ⇤ to make the
structural parameter estimate ✓̂ ‘transparent’, i.e., researchers can easily assess the potential
bias of the parameter estimators for various scenarios of misspecification represented by E[g̃].
Furthermore, Section 5 of AGS introduced the notion of the sample sensitivity, which is associated
with the derivative @✓̂(0)/@� of the GMM estimates ✓̂(�) under the perturbed sample moment
ĝ(✓, �) = ĝ(✓) + �⌘ with ⌘ = plimn!1ĝ(✓0).

In this paper, we follow up the analysis in AGS by investigating the effect of different GMM
weight matrices Ŵ on the sample sensitivity. There are several motivations for this study. First,
the GMM estimation typically involves the first stage parameter estimates in the construction of
the weight matrix. Thus, researchers may want to allow the perturbation parameter � to affect on
the weight matrix. Indeed such analysis is conducted in the online appendix of AGS (Section 2.1),
where Ŵ is replaced with Ŵ (�) and the corresponding sample sensitivity is derived. However,
a typical form of the GMM weight matrix is the inverse of ⌦̂(✓̂1) = 1

n

Pn
i=1 g(Xi, ✓̂1)g(Xi, ✓̂1)0,

where g(X, ✓) is the moment functions for observables X and ✓̂1 is a first stage estimate, and
thus it is not clear how the perturbation parameter � in the sample moment ĝ(✓, �) will affect on
⌦̂(✓̂1)�1 and ✓̂1. Second, for the GMM estimation, it is also common to employ (the inverse of)
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the centered variance ⌦̃(✓̂1) = 1
n

Pn
i=1{g(Xi, ✓̂1)�ĝ(✓̂1)}{g(Xi, ✓̂1)�ĝ(✓̂1)}0 as the weight matrix.

Indeed Hall (2000) argued that this centered weight matrix ⌦̃(✓̂1)�1 is more stable than ⌦̂(✓̂1)�1

under global misspecification. Although AGS’s sensitivity focuses on local misspecification, it
would be useful to see the effect of centering in the weight matrix for the sample sensitivity.
See also Hall and Inoue (2003) for fundamental roles of the GMM weight matrix under global
misspecification. Third, another popular choice of the GMM weight matrix is the one for the
continuous updating GMM estimator (Hansen, Heaton and Yaron, 1996). In this case, the weight
matrix involves the unknown parameter ✓, say Ŵ (✓, �), and hence the framework of AGS needs
to be adjusted. Finally, in the applied econometrics literature, it is well known that the above
variants of the GMM estimators show rather different finite sample properties (see, e.g., the
special issue of the Journal of Business & Economic Statistics, Vol. 14, No. 3). Therefore, it
is of interest to provide bias measures which are also sensitive to different choices of the weight
matrix and estimation method.

In this paper, we address the above issues by considering a more specific form of the local
perturbation, that is g(Xi, ✓, �) = g(Xi, ✓) + �⌘ for each i. Although this perturbation is less
general than the perturbed moment ĝ(✓, �) studied by AGS, it allows us to derive explicit bias
formulae for the above variants of the GMM estimators. Also the derived bias estimators are
all consistent for AGS’s (population) bias ⇤⌘. Therefore, our bias estimates may be considered
as characterizations of the higher-order terms to estimate ⇤⌘ under the particular form of local
perturbation, and provide useful complements to AGS’s sensitivity analysis for researchers who
are also concerned with the choice of the GMM estimation method in practice.

This paper is organized as follows. Section 2 presents our main result on the bias measures
of the different GMM estimates. Section 3 illustrates our methodology by a consumption based
asset pricing model using Japanese data.

2. Main results

We first fix the notation. Let gi(✓) = g(Xi, ✓) be a d-dimensional vector of moment functions
for a k-dimensional vector of parameters ✓ with d > k, and data {Xi}ni=1. Define the sample
moment function ĝ(✓) = n�1Pn

i=1 gi(✓), uncentered sample second moments matrix ⌦̂(✓) =

n�1Pn
i=1 gi(✓)gi(✓)

0, and centered sample second moments matrix ⌦̃(✓) = n�1Pn
i=1{gi(✓) �

ĝ(✓)}{gi(✓)� ĝ(✓)}0. We consider the GMM estimators solving

min
✓

ĝ(✓)0Wĝ(✓), (1)

with five different choices for W :

(i): Ŵ which does not involve gi(✓) (first stage GMM, denoted by ✓̂1),
(ii): ⌦̂(✓̂1) (two-step GMM, denoted by ✓̂2),
(iii): ⌦̃(✓̂1) (two-step GMM with centering, denoted by ✓̃2),
(iv): ⌦̂(✓) (continuous updating GMM, denoted by ✓̂c),
(v): ⌦̃(✓) (continuous updating GMM with centering, denoted by ✓̃c).

If the model is correctly specified (i.e., E[gi(✓0)] = 0 for a unique true value ✓0), all these
estimators are consistent and asymptotically normal under certain regularity conditions, and the
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estimators (ii)-(v) are asymptotically efficient. This paper is concerned with bias measures of
these estimators against local misspecification from the model assumption.

In particular, we consider the following perturbations for the moment functions

gi(✓, �) = gi(✓) + �⌘, (2)

for each i = 1, . . . , n, where � is a scalar perturbation tuning parameter and ⌘ = plimn!1ĝ(✓0) is
a d-dimensional constant vector. Researchers can choose ⌘ for each specific scenario of violation
of the identifying assumptions.

To begin with, let us introduce the bias formula for the first stage GMM estimate ✓̂1 derived
in Section 5 of AGS. Let ĝ(✓, �) = n�1Pn

i=1 gi(✓, �) and ✓̂1(�) = argmin✓ ĝ(✓, �)0Ŵ ĝ(✓, �) be the
first stage GMM estimator using the perturbed moment function gi(✓, �). Then we obtain (see,
Section 2.1 in the online appendix of AGS)

@✓̂1(0)

@�
= �{Ĝ(✓̂1)

0Ŵ Ĝ(✓̂1) + Â1}�1Ĝ(✓̂1)
0Ŵ⌘, (3)

where Ĝ(✓) = @ĝ(✓)
@✓0 , Â1 =

⇣
@Ĝ(✓̂1)
@✓(1)

⌘0
Ŵ ĝ(✓̂1), . . . ,

⇣
@Ĝ(✓̂1)
@✓(k)

⌘0
Ŵ ĝ(✓̂1)

�
, and the matrix Ĝ(✓̂1)0Ŵ Ĝ(✓̂1)+

Â1 is assumed to be non-singular.
As clarified in AGS, the component �{Ĝ(✓̂1)0Ŵ Ĝ(✓̂1) + Â1}�1Ĝ(✓̂1)0Ŵ in (3) is a consistent

estimator for the sensitivity ⇤. However, as shown in AGS, if the weight also depends on �, then
the derivative @✓̂1(0)

@� may not take a linear form in ⌘ without an intercept. Thus, we hereafter
present analogous derivatives for the GMM estimators (ii)-(v).

Define ⌦̂(✓, �) = n�1Pn
i=1 gi(✓, �)gi(✓, �)

0, and

✓̂2(�) = argmin
✓

ĝ(✓, �)0⌦̂(✓̂1(�), �)
�1ĝ(✓, �), ✓̃2(�) = argmin

✓
ĝ(✓, �)0⌦̃(✓̂1(�))

�1ĝ(✓, �),

✓̂c(�) = argmin
✓

ĝ(✓, �)0⌦̂(✓, �)�1ĝ(✓, �), ✓̃c(�) = argmin
✓

ĝ(✓, �)0⌦̃(✓)�1ĝ(✓, �).

Note that the weight matrices of ✓̃2(�) and ✓̃c(�) are written by using ⌦̃(✓) (because gi(✓, �) �
ĝ(✓, �) = gi(✓)� ĝ(✓)). The derivatives of these estimators with respect to � are summarized in
the following proposition.

Proposition. Under the setup of this section, it holds

(i): Bias of the first stage GMM:

@✓̂1(0)

@�
= �{Ĝ(✓̂1)

0Ŵ Ĝ(✓̂1) + Â1}�1Ĝ(✓̂1)
0Ŵ⌘.

(ii): Bias of the two step GMM:

@✓̂2(0)

@�
= �{Ĝ(✓̂2)

0⌦̂(✓̂1)
�1Ĝ(✓̂2) + Â2}�1{Ĝ(✓̂2)

0⌦̂(✓̂1)
�1⌘ + B̂2},
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where

Â2 =

" 
@Ĝ(✓̂2)

@✓(1)

!0

⌦̂(✓̂1)
�1ĝ(✓̂2), . . . ,

 
@Ĝ(✓̂2)

@✓(k)

!0

⌦̂(✓̂1)
�1ĝ(✓̂2)

#
,

B̂2 = �Ĝ(✓̂2)
0⌦̂(✓̂1)

�1Ĉ2⌦̂(✓̂1)
�1ĝ(✓̂2),

Ĉ2 =
1

n

nX

i=1

" 
Gi(✓̂1)

@✓̂1(0)

@�

!
gi(✓̂1)

0 + gi(✓̂1)

 
Gi(✓̂1)

@✓̂1(0)

@�

!0#

+ĝ(✓̂1)⌘
0 + ⌘ĝ(✓̂1)

0.

(iii): Bias of the two-step GMM with centering for the weight

@✓̃2(0)

@�
= �{Ĝ(✓̃2)

0⌦̃(✓̂1)
�1Ĝ(✓̃2) + Ã2}�1{Ĝ(✓̃2)

0⌦̃(✓̂1)
�1⌘ + B̃2},

where

Ã2 =

" 
@Ĝ(✓̃2)

@✓(1)

!0

⌦̃(✓̂1)
�1ĝ(✓̃2), . . . ,

 
@Ĝ(✓̃2)

@✓(k)

!0

⌦̃(✓̂1)
�1ĝ(✓̃2)

#
,

B̃2 = �Ĝ(✓̃2)
0⌦̃(✓̂1)

�1C̃2⌦̃(✓̂1)
�1ĝ(✓̃2),

C̃2 =
1

n

nX

i=1

" 
Gi(✓̂1)

@✓̂1(0)

@�

!
gi(✓̂1)

0 + gi(✓̂1)

 
Gi(✓̂1)

@✓̂1(0)

@�

!0#

�
 
Ĝ(✓̂1)

@✓̂1(0)

@�

!
ĝ(✓̂1)

0 + ĝ(✓̂1)

 
Ĝ(✓̂1)

@✓̂1(0)

@�

!0

.

(iv): Bias for the continuous updating GMM:

@✓̂c(0)

@�
= �

h
{Ĝ(✓̂c)

0 � ⇠̂(✓̂c)
0}⌦̂(✓̂c)�1Ĝ(✓̂c) + Âc

i�1
[{Ĝ(✓̂c)

0 � ⇠̂(✓̂c)
0}⌦̂(✓̂c)�1(⌘ � D̂c) + B̂c],

where

Âc =

"
@G(✓̂c)0

@✓(1)
� @⇠̂(✓̂c)0

@✓(1)
� {Ĝ(✓̂c)

0 � ⇠̂(✓̂c)
0}⌦̂(✓̂c)�1@⌦̂(✓̂c)

@✓(1)
⌦̂(✓̂c)

�1ĝ(✓̂c), . . .

 
@G(✓̂c)0

@✓(k)
� @⇠̂(✓̂c)0

@✓(k)
� {Ĝ(✓̂c)

0 � ⇠̂(✓̂c)
0}⌦̂(✓̂c)�1@⌦̂(✓̂c)

@✓(1)

!
⌦̂(✓̂c)

�1ĝ(✓̂c)

#

B̂c =
@⇠̂(✓, 0)0

@�
⌦̂(✓̂c)

�1ĝ(✓̂c), D̂c = {ĝ(✓̂c)⌘0 + ⌘ĝ(✓̂c)
0}⌦̂(✓̂c)�1ĝ(✓̂c),

⇠̂(✓̂c)
0 =

2

664

ĝ(✓̂c)0⌦̂(✓̂c)�1 @⌦̂(✓̂c)
@✓(1)

...

ĝ(✓̂c)0⌦̂(✓̂c)�1 @⌦̂(✓̂c)
@✓(k)

3

775 ,
@⌦̂(✓̂c)

@✓(j)
=

1

n

nX

i=1

gi(✓̂c)G
(j)
i (✓̂c)

0 +
1

n

nX

i=1

G(j)
i (✓̂c)gi(✓̂c)

0,

@⇠̂(j)(✓, 0)0

@�
=

⇣
⌘0 � ĝ(✓̂c)

0⌦̂(✓̂c)
�1{ĝ(✓̂c)⌘0 + ⌘ĝ(✓̂c)

0}
⌘
⌦̂(✓̂c)

�1@⌦̂(✓̂c)

@✓(j)

+ĝ(✓̂c)
0⌦̂(✓̂c)

�1

 
1

n

nX

i=1

⌘Ĝ(j)(✓̂c)
0 +

1

n

nX

i=1

Ĝ(j)(✓̂c)⌘
0

!
,

where the superscript j refers to the j-th row of an object.
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(v): Bias of the continuous updating GMM with centering for the weight:

@✓̃c(0)

@�
= �

h
{Ĝ(✓̃c)

0 � ⇠̃(✓̃c)
0}⌦̃(✓̃c)�1Ĝ(✓̃c) + Ãc

i�1 h
{Ĝ(✓̃c)

0 � ⇠̃(✓̃c)
0}⌦̃(✓̃c)�1⌘ + B̃c

i
,

where

Ãc =

" 
@G(✓̃c)0

@✓(1)
� @⇠̃(✓̃c)0

@✓(1)
� {Ĝ(✓̃c)

0 � ⇠̃(✓̃c)
0}⌦̂(✓̃c)�1@⌦̃(✓̃c)

@✓(1)

!
⌦̃(✓̃c)

�1ĝ(✓̃c), . . .

 
@G(✓̃c)0

@✓(k)
� @⇠̃(✓̃c)0

@✓(k)
� {Ĝ(✓̃c)

0 � ⇠̃(✓̃c)
0}⌦̂(✓̃c)�1@⌦̃(✓̃c)

@✓(k)

!
⌦̃(✓̃c)

�1ĝ(✓̃c)

#
,

B̃c =
@⇠̃(✓̃c, 0)0

@�
⌦̃(✓̃c)

�1ĝ(✓̃c),

⇠̃(✓̃c)
0 =

2

664

ĝ(✓̃c)0⌦̃(✓̃c)�1 @⌦̃(✓̃c)
@✓(1)

...
ĝ(✓̃c)0⌦̃(✓̃c)�1 @⌦̃(✓̃c)

@✓(k)

3

775 ,
@⌦̃(✓̃c)

@✓(j)
=

@⌦̂(✓̃c)

@✓(j)
� Ĝ(j)(✓̃c)ĝ(✓̃c)

0 � ĝ(✓̃c)Ĝ
(j)(✓̃c)

0,

@⇠̃(j)(✓̃c, 0)0

@�
= ⌘0⌦̃(✓̃c)

�1@⌦̃(✓̃c)

@✓(j)

+ĝ(✓̃c)
0⌦̃(✓̃c)

�1

 
1

n

nX

i=1

G(j)
i (✓̃c)⌘

0 +
1

n

nX

i=1

⌘G(j)
i (✓̃c)

0 � Ĝ(j)(✓̃c)⌘
0 � ⌘Ĝ(j)(✓̃c)

0

!
,

The derivations are tedious but analogous to the one for the online appendix Proposition 2 of
AGS by using the implicit function theorem. We note that under local perturbations in the sense
of the online appendix Proposition 1 of AGS, it holds ĝ(✓̂)

p! 0 for ✓̂ = ✓̂2, ✓̃2, ✓̂c, ✓̃c, and thus all
these bias terms converge to ⇤⌘ under mild regularity conditions that guarantee the convergence
of the sample moments, such as ⌦̂(·), ⌦̃(·), Ĝ(·), and their derivatives.

The derivatives for the two-step and continuous updating GMM estimators take somewhat
analogous forms. For example, the terms Â2, Ã2, Âc, Ãc emerge by the same reason as Â1 in the
first stage GMM, i.e., the second term in the derivative of the first-order condition

@

@�
{Ĝ(✓̂1(�), �)

0Ŵ ĝ(✓̂1(�), �)}

= Ĝ(✓̂1(�), �)
0Ŵ

⇢
@

@�
ĝ(✓̂1(�), �)

�
+

⇢
@

@�
Ĝ(✓̂1(�), �)

�0
Ŵ ĝ(✓̂1(�), �).

On the other hand, the terms B̂2, B̃2, B̂c, B̃c are additional terms due to dependence of the weight
matrices on �. Observe that the terms Â2, Ã2, Âc, Ãc and B̂2, B̃2, B̂c, B̃c involve the components
ĝ(✓̂) for the corresponding estimators. Therefore, under local perturbations with ĝ(✓̂)

p! 0, these
terms are asymptotically negligible. However, as is illustrated in the next section, these terms are
useful to distinguish bias properties of the different GMM estimation methods in finite samples.

3. Illustration

In this section, we apply our proposed sensitivity measures to a consumption based asset
pricing model. Our illustrating example follows Hansen and Singleton (1982). Consider a repre-
sentative investor who maximizes his/her expected discounted utility
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max
{Ct+i}1i=1

E
" 1X

i=0

�iC
�
t+i � 1

�

����� It

#
,

where Ct denotes consumption at time t, and It denotes the information set of the investor at
time t. There is an asset available to the investor, and we denote the net rate of return on the
asset at time t as Rt. Then the first order condition implies

E
"
�(1 +Rt)

✓
Ct+1

Ct

◆��1

� 1

����� It

#
= 0.

Let Zt ✓ It be a subset of the information set It. Our parameters of interest ✓ = (�, �)0 are the
subjective discount factor � and the coefficient in relative risk aversion �. These parameters can
be estimated by using the moment condition E[gt(✓0)] = 0, where

gt(✓) = Zt

(
�(1 +Rt)

✓
Ct+1

Ct

◆��1

� 1

)
. (4)

For our illustration, we use data on the consumption growth rate and the average rate of
return on stocks in Japan. Using the Nikkei 225 stock price index and the seasonally adjusted
nondurable consumption data from Yahoo Finance and Statistics Bureau of Japan, we construct
the data on the consumption growth rate and the average rate of return on stocks. These time
series data are adjusted for inflation by the consumer price index. The time period is from
January 1981 to June 2016.

In the moment function (4), there are many possible choices of instruments Zt. Hansen and
Singleton (1982) used lags of consumption growth and lags of the rate of return on assets, and
estimated the parameters with a number of different choices of instruments. Here we focus on one
set of instruments to simplify the presentation, that is Zt = (1, Ct/Ct�1, Ct�1/Ct�2, Rt�1, Rt�2)0.
The parameter estimates are summarized in Table 1. The obtained GMM estimates are reason-
able in the empirical literature of this class of consumption based asset pricing model. The
estimate of � for the first stage GMM with W = I takes a lower value compared to the other
GMM estimates.

Table 1. Parameter estimates

Coefficient in relative Discount factor �
Ŵ risk aversion �
I 0.6187 0.9970

⌦̂(✓̂1) 1.0110 0.9966
⌦̃(✓̂1) 1.0116 0.9966
⌦̂(✓) 1.0030 0.9966
⌦̃(✓) 1.0030 0.9966

The present model assumes time-separable utility, and thus the current consumption decision
is independent from the past consumption path. There are some situations where this assumption
is not appropriate; in models with habit formation, the current consumption choice may depend
on the agent’s own past consumption through the habit stock, for example. Based on this

6



background, we consider the perturbed model gi(✓, �) = gi(✓) + �⌘. If the model is correctly
specified, ⌘ should equal to zero vector, which corresponds to the original model assumption.
Alternatively, a researcher may have doubts about the time-separability assumption and believe
that lags of consumption growth cannot be valid instruments. Under this alternative view, the
second and third elements of ⌘ should be non-zero (with the other elements being zeros).

Under such local violations of identifying assumptions, Table 2 reports the bias estimates ⇤̂⌘

based on AGS’s proposed measure of sensitivity

⇤̂ = {Ĝ(✓̂)0Ŵ Ĝ(✓̂)}�1Ĝ(✓̂)0Ŵ ,

with different GMM weight matrices for Ŵ . Except for the case of Ŵ = I, the bias estimates
⇤̂⌘ are quite similar across different choices of weight matrices. The local violation with ⌘ =

(0, 0.01, 0.01, 0, 0)0 implies that the estimates of � are biased upward by roughly 17%, and that
bias for � is negligibly small. For Ŵ = I, although the estimated values are different, the
proportions of the biases are comparable to the other cases. In this example, the bias estimates
⇤̂⌘ by AGS are not sensitive to the choice of the weights for the two-stage or continuous updating
GMM.

Table 2. Bias in parameter estimates measured with ⇤̂⌘

Bias in Bias in
coefficient in relative discount factor�

Ŵ and ✓̂ risk aversion�
I and ✓̂1 0.009113 �1.2425⇥ 10�6

⌦̂(✓̂1) and ✓̂2 0.016944 5.0308⇥ 10�6

⌦̃(✓̂1) and ✓̃2 0.016962 5.0082⇥ 10�6

⌦̂(✓) and ✓̂c 0.016466 5.1106⇥ 10�6

⌦̃(✓) and ✓̃c 0.016465 5.11⇥ 10�6

Notes: This table reports bias in parameter estimates measured with ⇤⌘. We consider a local violation of identifying
assumptions with ⌘ = (0, 0.01, 0.01, 0, 0)0.

In Table 3, we now report the estimates of the proposed bias measures. For Ŵ = I, the
bias estimates are very similar to AGS’s ⇤̂⌘ with Ŵ = I. As expected, our bias measures are
sensitive to the choice of the GMM weight. Although the signs of the biases are same as AGS’s
⇤̂⌘, their values are different. For example, if we focus on �, the bias of the continuous updating
GMM with centering (i.e., @✓̃c(0)/@�) is similar to ⇤̂⌘, and takes the smallest value among the
two step and continuous updating GMM methods. On the other hand, the bias of the two step
GMM (i.e., @✓̂2(0)/@�) implies a larger upward bias, around 58% of the estimate of �. Also,
the centering substantially reduces the bias of @✓̂2(0)/@�. In this example, our bias estimates
indicate that the two step GMM methods are more sensitive due to the sensitivity in the first
step estimation, and that the continuous updating GMM tends to be less sensitive.

7



Table 3. Bias in parameter estimates measured with @✓̂(0)/@�

Bias in Bias in
coefficient in relative discount factor �

@✓̂(0)
@� risk aversion�
✓̂1 0.0092349 �1.1902⇥ 10�6

✓̂2 0.58207 4.8183⇥ 10�3

✓̃2 0.13085 6.0069⇥ 10�4

✓̂c 0.024685 2.7922⇥ 10�7

✓̃c 0.018237 4.0453⇥ 10�6

Notes: This table reports bias in parameter estimates measured with @✓̂(0)/@�. We consider a local violation of
identifying assumptions with ⌘ = (0, 0.01, 0.01, 0, 0)0.
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