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ABSTRACT. This paper studies finite sample performances of the conditional GMM estimators
for a particular conditional moment restriction model, which is commonly applied in economic
analysis using gravity models of international trade. We consider the GMM estimator with
growing moments and Dominguez and Lobato’s (2004) process-based GMM estimator. Under
the simulation designs by Santos Silva and Tenreyro (2006), we find that Dominguez and Lo-
bato’s (2004) estimator is favorably comparable with the Poisson pseudo maximum likelihood

estimator, and outperforms other estimators.

1. SETUP AND ESTIMATORS

This note is concerned with estimation of the conditional moment restriction model
E[Y|X] = exp(X'J), (1)

almost surely, where Y is a scalar dependent variable, X is a k-dimentional vector of covariates,
and 3 is a k-dimensional vector of parameters. This model can be considered as an example of
the nonlinear regression model for continuous Y or Poisson regression model for non-negative
integer Y. This particular model has been extensively applied and studied in economic analysis
using gravity models of international trade. See, e.g., Eaton and Kortum (2002), Anderson and
van Wincoop (2003), Santos Silva and Tenreyro (2006), among others.

Based on a random sample {Y;, X;}7 ,, popular estimation methods are the nonlinear least

squares (NLS) fyLg = arg mingn =1 Y1 {V; — exp(X/B)}? whose first-order condition is

% Z{Yi — exp(X!Bn1s)} exp(XAnrs) X = 0, (2)

=1

and the Poisson pseudo maximum likelihood (PPML) method whose first-order condition is

% > {Yi — exp(X{Brpyr)} Xi = 0. (3)
=1

In an influential paper, Santos Silva and Tenreyro (2006) argued the inconsistency problem
of the OLS estimator for the log-linear model under heteroskedasticity with normal errors, and
investigated the NLS and PPML estimators. In particular, Santos Silva and Tenreyro (2006)
advocated the use of the PPML estimator under heteroskedastic errors rather than the NLS
estimator. Their argument is that the NLS estimator tends to give more weights on the obser-

vations where exp(X/ 5 ~NLs) is large and is generally noisier, and the NLS estimator tends to be



less efficient than the PPML estimator. A simulation study by Santos Silva and Tenreyro (2006)
endorsed the excellent performance of the PPML estimator.

In this note, we examine the finite sample performance of the conditional GMM estimator
for the particular model in (1). By the law of iterated expectations, the conditional moment

restriction (1) implies unconditional moment restrictions
E[{Y — exp(X'B)}1(X)] = 0, (4)

for any function h(-) (as far as the above expectation is well-defined). Thus, both the NLS
estimator (which specifies h(X) = exp(X’S)X) and PPML estimator (which specifies h(X) = X)
are consistent and also asymptotically normal under suitable regularity conditions.

In the context of estimation of the conditional moment restriction models, there are two
substantial issues for the choice of h(-). First, the conditional moment restriction in (1) implies
infinitely many unconditional moment restrictions in the form of (4). Thus, generally neither
the NLS nor PPML estimator achieves the semiparametric efficiency bound to estimate £ in
the model (1). Currently several efficient estimation methods are available, such as the optimal
instrumental variable estimator, and growing moment-based estimator (see, Chapter 7 of Hall
(2005) for a survey). In our simulation study below, we consider the GMM estimator with

growing moments (Donald, Imbens and Newey, 2003):

foarss = argmn <jl ng-w)) [i ng)gm-(m’] (i ngw)) ,
=1 i=1 i=1

where 3 is a preliminary estimator, and g;(8) = {¥; — exp(X!8)}hn; with a vector of basis

-1

functions hy; = (p1(Xy),. .. pk, (X)) for k, — 0o as n — oco. A common drawback of efficient
estimation methods for the conditional moment restrictions is that they typically involve some
tuning parameters, such as the series lengths and bandwidths, to be chosen by the researcher.

The second issue is on consistency of point estimators. In an insightful paper, Dominguez and
Lobato (2004) argued that even though the conditional moment restriction (1) uniquely identifies
the parameters 3, the implied unconditional moment restriction (4) with finite dimensional A(-)
may not fully exploit information contained in (1) and identification of 8 may not be guaranteed.
In this case, the GMM estimator is typically inconsistent. To address this issue, Dominguez
and Lobato (2004) observed that the conditional moment restriction (1) is equivalent to the
continuum of the unconditional moment restrictions E[{Y — exp(X'B)} (X < z)] = 0 for all z,
and proposed the following estimator

2

ﬁDL = argmﬁinz Z:{YZ —exp(X/B)H(X; < X)) | - (5)
1=1 Li=1

Dominguez and Lobato (2004) showed the consistency and asymptotic normality of this estimator
under mild regularity conditions. Although B pr does not achieve the semiparametric efficiency
bound, it does not involve any tuning parameters.

In the next section, we evaluate the finite sample properties of BGM M and B pr, based on the

simulation designs motivated by gravity models.



2. SIMULATION

We now assess the finite sample performances of the conditional GMM estimators and other es-
timators by Monte Carlo simulations. We adopt simulation designs by Santos Silva and Tenreyro
(2006). The dependent variable is generated by

Y: = exp(Bo + L1 X1i + B2X2i)ni,

fori =1,...,1000, where Xy; follows the standard normal distribution, Xs; is a dummy variable
that takes 1 with probability 0.4 and 0 otherwise, 7; is a log-normal random variable with mean
1 and variance o2, and 8 = (8o, 81, 82)" = (0,1,1)". The covariates X1; and Xo; are independent.

As in Santos Silva and Tenreyro (2006), we consider the following specifications of the conditional

variance 01-2:
Case 1: 07 = exp(—2X/f); Var(Y;|X;) = 1.
Case 2: 02 = exp(—X!B); Var(V;|X;) = exp(X/f).
Case 3: 07 = 1; Var(V;|X;) = exp(2X/3).
Case 4: 07 = exp(—X[B) + exp(Xa;); Var(Y;|X) = exp(X/B) + exp(Xa;) exp(2X]5).

In Case 1, the NLS estimator is optimal because the conditional variance of Y; is constant.
However this case is typically unrealistic for bilateral trade models. In Case 2, the conditional
variance of Y; equals its conditional mean, and the PPML estimator is optimal. In Case 3,
because 7); follows the log-normal with unit variance, the OLS estimator of the log-linear model
becomes consistent and the maximum likelihood estimator. In this case, the gamma pseudo-
maximum-likelihood (GPML) is optimal because the conditional variance of Y; is proportional
to the square of its conditional mean. Finally Case 4 is the most complicated and perhaps
realistic case. The conditional variance of Y; is a quadratic function of its conditional mean and
other variables. For each case, we conduct simulations with and without rounding errors in the
dependent variable.

For this model, we consider seven estimation methods: (i) DL, (ii)) GMM, (iii) PPML, (iv)
GPML, (v) NLS, and (vi) OLS.!

Table 1 presents estimation biases and MSEs for 87 and B2 based on 1000 Monte Carlo
replications. As shown in Santos Silva and Tenreyro (2006), OLS is very biased except for Case
3 and NLS is biased in the cases where heteroskedasticity is severe. Moreover, GPML is very
sensitive to rounding errors and does not perform well in the presence of rounding errors.

PPML performs very well for all cases. In each case, PPML has small bias and is relatively
robust to rounding errors in the dependent variable. GMM is more robust to the rounding
errors than PPML. Similar to NLS, however, GMM is somewhat biased in the cases where
heteroskedasticity is severe. Among the methods we consider, the performance of DL is the
best. The biases of DL are small in various situations and outperforms PPML in terms of MSE
in the cases where heteroskedasticity is severe (Cases 3 and 4). This outperformance of DL is
maintained even when the rounding errors are present. It is also remarkable that DL performs
as well as PPML even for Case 2, where PPML is optimal.

IFor GMM, we set ﬁ as the PPML estimator and hn; = (1, X15, Xos, Xfi,Xlini)’. Our preliminary simulation
suggests that the results are less sensitive to the choice of hy;.



Overall, our simulation results suggest that DL is favorably comparable to PPML and is better

than other estimation methods.
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TABLE 1. Simulation Results

Without rounding error With rounding error
B B2 B B2
Bias MSE Bias MSE Bias MSE Bias MSE
Case 1: Var(V;|X;) =1
DL 0.00012 0.00058 0.00221 0.00211 0.02338 0.00120 0.04365 0.00450
GMM -0.00064 0.00012 -0.00167 0.00206 0.00278 0.00014 0.02381 0.00260
PPML 0.00048 0.00025 0.00122 0.00075 0.01959 0.00068 0.02144 0.00135
GPML 0.01376 0.00449 0.00903 0.00682 0.11126 0.02101 0.09514 0.02094
NLS 0.00015 0.00006 0.00051 0.00030 0.00228 0.00007 0.00314 0.00034
OLS 0.38977 0.15339 0.35705 0.13061 - - - -

Case 2: Var(Y;|X;) = exp(X/f)

DL 0.00041 0.00071 -0.00042 0.00224 0.02723 0.00154 0.04820 0.00502
GMM -0.00041 0.00051 0.00058 0.00331 0.00167 0.00052 0.02877 0.00438
PPML 0.00043 0.00034 -0.00049 0.00157 0.02279  0.00090 0.02312 0.00225
GPML 0.00612 0.00180 0.00132 0.00350 0.13728 0.02402 0.11457 0.02023

NLS 0.00082 0.00108 0.00089 0.00363 0.00307 0.00108 0.00389 0.00367

OLS 0.21111 0.04540 0.19923 0.04201 - - - -

Case 3: Var(Y;|X;) = exp(2X]f)

DL  -0.00113 0.00286 0.00358 0.00488 0.02962 0.00386 0.06148 0.00924
GMM -0.00987 0.01192 0.02943 0.03336 -0.00969 0.01174 0.06344 0.03969
PPML -0.00420 0.00480 0.00826 0.00973 0.02280 0.00536 0.03649 0.01144
GPML -0.00016 0.00096 0.00367 0.00398 0.19904 0.04305 0.16872 0.03557

NLS 0.10079 1.11170 0.07932 0.80596 0.10326 1.11281 0.08753 0.96348

OLS  -0.00014 0.00070 0.00226 0.00272 - - - -

Case 4: Var(Y;|X;) = exp(X/8) + exp(X2;) exp(2X]5)

DL 0.00146 0.00809 -0.00549 0.01298 0.03703 0.00971 0.04405 0.01602
GMM -0.01351 0.02014 0.00570 0.06553 -0.00407 0.02040 0.04061 0.07003
PPML -0.00174 0.01066 -0.01108 0.02275 0.02559 0.01133 0.01385 0.02352
GPML 0.00505 0.00341 -0.00467 0.01256 0.12917 0.02413 0.09926 0.02772

NLS 0.31399 8.84744 0.03984 3.43802 0.31984 8.92830 0.04349 2.97709

OLS 0.13356 0.01927 -0.12998 0.02318 - - - -
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