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Part II: Estimation of Single-Agent Dynamic
Optimization Problem
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Motivation

I Most economic agents seem forward-looking (β 6= 0)
I Households care current consumption as well as future
consumptions

I Firms make huge investment for developing new
technology

I Current decisions often a¤ect future state variables
I If you spend too much today, you have to spend less in
the future

I If a drug company does not invest enough, it cannot
attain a pro�table pro�t
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Motivation

I Static analysis is irrelevant when these two conditions
hold

I Need to pursue a dynamic analysis

I This section looks at the models of single-agent dynamic
optimization problem (i.e., no strategic interaction with
others)

I Dynamic programming (DP) is a standard tool to analyze
this framework (Stokey, Lucas and Prescott)
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Goal

I Overview the very basic of single-agent maximization
problem using the model of Rust (1989)

I Present di¢ culty in estimating this model by
straightforward conventional methods

I Show how to apply a two-step method/BBL in this
framework
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Example: Rust�s Engine Replacement Model

I Harold Zurcher is a maintenance guy at a bus company in
Madison, Wisconsin

I He is responsible for deciding when each bus replaces its
engine

I The chance of engine trouble increases as engines
accumulates mileage

I Replacing engine incurs signi�cant expense

I Replacing decisions need to take into account the
trade-o¤ between current expenditure and future trouble

6



Example: Rust�s Engine Replacement Model

I Static model is NOT appropriate since
I Harold Zurcher should be forward-looking
I Current replacement decision a¤ects future pro�t

I Need to construct a dynamic model

I Consider a simple version of his model
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Model: Primitives
I Consider a particular bus

I Observable state variable: x

I Unobservable state variables: ε = fε (0) , ε (1)g

I Choice variable: i

i =
�
1 if replaced
0 otherwise

I Notation
I x : accumulated mileage on the bus engine at the current
period since the last replacement

I ε: cost factor observable to Zurcher but not to
econometricians

I i : replacement decision

8



Model: Period Pro�t

I Period pro�t function

u (x, i , θ1) =
�
� [RC + c (0, θ1)] + ε (1) if i = 1
�c (xt , θ1) + ε (0) if i = 0

I Operating cost increases as mileage accumulates

∂c (x, θ1)
∂x

> 0

I Notations
I RC : net replacement cost
I c (0, θ1): operating cost
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Model: Transition

I Additional mileage is a random draw from a certain
probability distribution:

p
�
x 0jx, i , θ3

�
=

�
g (x 0 � x, θ3) if i = 0
g (x 0 � 0, θ3) if i = 1

I This function represents the uncertainty about
I when this bus is in operation
I demand shock etc..
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Epsilon as a Structural Error Term

I In structural analysis, error terms ε has a direct economic
interpretation

I ε re�ects whatever relevant factors Zurcher observes but
econometricians do not

I Large values of ε (0) may represent bus driver�s positive
report on this bus

I Large values of ε (1) may represent engine inventory
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Conditional Independence Assumption (CI)
I To make estimation feasible, need to impose the following
restriction on the distribution of ε

p
�
x 0, ε0jx, ε, i , , θ2, θ3

�
= q

�
ε0jx 0, θ2

�
p
�
x 0jx, i , θ3

�
I Rust calls this assumption Conditional Independence
Assumption (CI)

I This assumption implies
I The value of x 0 is a su¢ cient statistic to characterize the
distribution of ε0

I The value of ε a¤ects the value of x 0 only through
investment i

I Type I extreme valued i.i.d ε and above transition
function satis�es this condition
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Model: Value Function

I Value function calculates the sum of expected discounted
pro�ts when Zurcher makes the pro�t-maximizing
decision every period:

V (x, ε, θ)

= max
i2f0,1g

[u (x, i , θ1) + ε (i , θ2)

+β
Z Z

V
�
x 0, ε0, θ

�
p
�
x 0jx, i , θ3

�
dF
�
ε0jx 0, θ2

�
dx 0]

where θ = (θ1, θ2, θ3)
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Model: Optimal Strategy

There exists an optimal policy σ (x, ε, θ) that maps the state
variable to f0, 1g

V (x, ε, θ)

= u (x, σ (x, ε) , θ1) + ε (σ (x, ε) , θ2)

+β
Z Z

V
�
x 0, ε0, θ

�
p
�
x 0jx, σ (x, ε) , θ3

�
dF
�
ε0jx 0, θ2

�
dx 0
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Model: Value Function

I Once we know the optimal policy function σ (x, ε, θ), the
chance of engine replacement at this period is

Pr ( i = 1j x) = Pr (σ (x, ε, θ) = 1)

=
exp

�
u (x, 1, θ1) + β

R ∞
0 V (x

0) p (x 0jx, f (x, θ) , θ3) dx 0
�

∑i 02f0,1g exp
�
u (x, i 0, θ1) + β

R ∞
0 V (x

0) p (x 0jx, i 0, θ3) dx 0
�
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The Data

I Suppose we observe the maintenance record of M
di¤erent buses fxmt , imt gMm=1

I For simplicity, assume all M buses are observationaly
equal except their mileages

I Want to recover the parameter of θ1 and θ3 from the data

I Start with a brute-force method, nested-�xed point
algorithm
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Step 1: Estimating the Transition Function
I Discretize the space of x into several intervals

I Assume x never decreases without replacing an engine

I Assume an increase in x in one period is no more than
two intervals

I These two assumptions imply x 0 � x 2 f0, 1, 2g

I Using the data, estimate�
θ30 = Pr (x 0 � x = 0ji = 0)
θ31 = Pr (x 0 � x = 1i = 0)

I This estimation can be done independently, thanks to CI
assumption

17



Step 2: Evaluating the Likelihood
I Let the value θ1 as given

I For a given set of parameters, �nd the optimal policy
f (x, ε, θ) and V (x, ε)

I This step requires solving DP numerically
I V (x , ε) is often approximated by Chebyshev polynomials
I See Judd (1989) for its implementation

I Calculate the likelihood of the observed event Lit (θ)

I Take log and summing up

lnL (θ) = ∑
i

∑
t
lnLit

= ∑
i

∑
t
[1 (iit = 0) lnPr (iit = 0jx)

+1 (iit = 1) lnPr (iit = 1jx)]
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Step 3: Maximizing the Likelihood

I Find a set of parameters that maximizes lnL (θ)

I This algorithm is straightforward but requires heavy
computation

I Need to solve the dynamic programming for every set of
parameters evaluated

I Estimation can be very slow

I Again, the two-step methods is very useful
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Estimating the Policy Function

I Both BBL and NPL require estimating the reduced-form
policy function of Zurcher

I Ideally, nonparametric methods are appealing

I In practice, �exible logit are often used

i� = α1x + α2x2 + α3x3 + υ

i =

�
0 if i� < 0
1 if i� � 0

I Used to approximate his observed/optimal behavior
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Estimation by BBL
I BBL estimates the structural parameters without solving
DP even once

I For estimating the parameter, the following optimization
condition is exploited:

V (x, σ) � V (x, σ̃) for all x

I Generate fake policies fσ0 (x)g that are slightly di¤erent
from the observed one σ̂ (x)

I Find a set of parameters that let σ (x) beat as many as
σ̂ (x) possible

I BBL use the data only to estimate policy function σ̂ (x)
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Estimation by BBL

I The basic idea is to transform a dynamic discrete choice
problem to the conventional (static) discrete choice
problem

I Approximate EV (x) by implementing the forward
simulation

I Find a set of parameters that rationalizes the observed
policy
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Implementing BBL Step by Step

I Generate fake policies fσ̃m (x)gNI1m=1

I Pick several initial values fxn0 g
NI2
n=1

I Calculate EV (x0, σ; θ) by forward simulation

I Calculate EV (x0, σ̃; θ) by forward simulation

I Find θ� that solves

min
θ

NI1

∑
m=1

NI2

∑
n=1

(min fEV (xn0 , σ; θ)� EV (xn0 , σ̃m; θ) , 0g)2
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Implementing Forward Simulation

I Pick T so that βT is su¢ ciently small

I By using p̂(x 0jx), σ (x) and F (ε), simulate a stream of
his period pro�t for T periods

I Calculate ∑T
t=1 βtu (xt , σ (xt , εt) , θ1)

I Iterating this process many times, calculate
EV (xn0 , σ; θ) = E

h
∑T
t=1 βtu (xt , σ (xt , εt) , θ1)

i
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Summary

I Go over a single-agent dynamic optimization problem by
using Rust (1989)

I Nested-�xed point is straightforward but its
computational burden can be prohibitive

I Two-step methods are very useful to obtain consistent
estimates by maintaining computational burden to
practical level
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