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Abstract. Since the seminal works by Abadie et al. (2014, 2020), there has been considerable

attention on finite-population inference for various econometric problems. This paper extends

the finite-population asymptotic approach to the generalized method of moments (GMM) esti-

mator for overidentified moment condition models. A motivating setup is the situation where re-

searchers have auxiliary information on some population moments. Under the finite-population

asymptotics, we study asymptotic properties of the GMM estimator, propose asymptotically

conservative variance estimators, and discuss how to select the GMM weight matrix. A simula-

tion study based on real data for entrepreneurship training and incubation programs illustrate

usefulness of the proposed method.

1. Introduction

Since the seminal works by Abadie et al. (2014, 2020), there has been growing interest in
inference methods under finite-population setups accounting for design-based uncertainty. The
design-based perspective for investigating econometric or statistical methods has been prevalent
in randomized experiments (e.g., Neyman, 1923; Rosenbaum, 2002; Freedman, 2008a, 2008b).
However, the literature does not consider the sampling-based uncertainty deriving from not
observing the entire population since it is common to assume that random assignment is the
only source of uncertainty in an experimental setting. On the other hand, extensive statistical
literature exists on finite-population asymptotics, taking into account of the sampling variation
(see, Práŝková and Sen, 2009 for an overview) although this body of work omits consideration on
the design-based uncertainty. Abadie et al. (2020) developed an alternative inference framework
in observational study settings by incorporating both design and sampling-based uncertainty.
While their framework is restricted to the case of linear regression, the recent literature considers
design-based uncertainty in different settings; M-estimators (Xu, 2021), spatial correlation (Xu
and Wooldridge, 2022), difference-in-differences (Rambachan and Roth, 2022), and staggered
difference-in-differences (Athey and Imbens, 2022; Roth and Sant’Anna, 2023). Our paper closely
relates to the work by Xu (2021), which extends Abadie et al. (2020) to the M-estimator setting.

In this paper, we extend the above existing results on finite-population inference to the sit-
uations where estimands of interest are defined by overidentified moment conditions. In con-
ventional empirical economic analyses using the infinite-population asymptotics, overidentified
moment condition models are ubiquitous, and there is rich literature on applied and theoreti-
cal econometric analyses for these models typically using the generalized method of moments
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(GMM) (see, e.g., Hall, 2005, for an overview). Therefore, it is of substantial interest to de-
velop the GMM theory for finite-population inference problems. One motivating example is the
situation where the researcher has auxiliary information on the population moments as investi-
gated in Imbens and Lancaster (1994). Under the finite-population asymptotic framework, the
proportion of the sample size to the population size is non-negligible and it may be plausible
that researchers have access to some population moments. Examples include large-scale exper-
iments where sample representativeness is important (Muralidharan and Niehaus, 2017; Duflo
and Banerjee, 2017) and the Integrated Public Use Microdata Series (IPUMS) data, which is the
10% sample of the U.S. Census. In these cases, researchers may incorporate moments based on
the entire states or counties to improve point estimators and associated inference. Furthermore,
the finite-population asymptotic analysis of the GMM estimator and development of feasible
inference methods are open issues in the literature. In contrast to M-estimation problems as
studied in Xu (2021), the GMM requires a weight matrix, and currently there is no guidance on
its choice under the finite-population asymptotics.

This paper studies asymptotic properties of the GMM estimator for overidentified moment
condition models under the finite-population asymptotics. We derive the consistency and as-
ymptotic normality of the GMM estimator. In particular, we find that its finite-population
asymptotic variance takes a different form from the conventional infinite-population asymptotic
variance, which is an analogous finding in just-identified modes (e.g., Abadie et al., 2020; Xu,
2021). Since our asymptotic variance for the GMM estimator involves a component which is not
consistently estimable, we propose two asymptotically conservative variance estimators: one is
the conventional variance estimator and the other is an adapted version of Abadie et al. (2020)’s
variance estimator to the GMM context. Furthermore, we discuss the choice of the GMM weight
matrix under the finite-population asymptotic framework and suggest a feasible data-dependent
weight, where the associated conservative variance estimator shows a desirable property. These
theoretical findings are illustrated by a empirically motivated simulation study by using real data
on entrepreneurship training and incubation programs in North American undergraduates.

The rest of the paper is organized as follows. Section 2 presents our main results. After intro-
ducing our basic setup and the GMM estimator in Section 2.1, Section 2.2 presents asymptotic
properties of the GMM estimator under the finite-population asymptotics and studies estimation
of the asymptotic variance, and we discuss the choice of the GMM weight matrix in Section 2.3.
Section 3 illustrates the proposed inference method by a simulation study based on the real data
for entrepreneurial activities of minority groups, where auxiliary information on some population
moments are available as in Imbens and Lancaster (1994).

2. Main results

2.1. Setup and estimator. We first introduce our basic setup based on Abadie et al. (2020)
and Xu (2021). For each unit i = 1, . . . ,M with population size M , consider the population
{Xi, zi, Yi}Mi=1, where Xi is a vector of assignment variables, zi is a vector of i’s attributions,
and Yi is a vector of outcome variables. Our interest is in the effect of Xi rather than zi. For
example, in empirical analysis, Xi refers to a treatment status of an experiment or indicator for
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a policy intervention, while zi includes e.g. age, gender, and socioeconomic status of individuals.
Throughout the paper, we assume that zi is non-random, and the outcomes are written as
Yi = yi(Xi) for a potential outcome function yi(·). Although these variables depend on the
population size M to conduct asymptotic analysis for M → ∞, we suppress such dependence
to simplify the presentation. From the finite population {Xi, zi, Yi}Mi=1, we observe a random
sample by Bernoulli sampling. Let Ri be a Bernoulli random variable, which equals to one if i
is sampled, and zero otherwise. Let N =

∑M
i=1Ri be the sample size, which is random.

This paper is concerned with the situation where the estimand of interest is defined as a
solution of overidentified moment restrictions. Let gi(Xi, θ) := g(Xi, zi, yi(Xi), θ) with a k-
dimensional vector of moment functions g and a p-dimensional vector of parameters. The esti-
mand of interest θ∗M is defined as a unique solution of

1

M

M∑
i=1

E[gi(Xi, θ
∗
M )] = 0, (2.1)

for k > p, i.e., the moment condition (2.1) is overidentified. Note that the expectation E[·] is
taken with respect to the assignment variables Xi. It should be noted that the existing papers
such as Abadie et al. (2020) and Xu (2021) do not cover such a setup.

As an estimator of θ∗M , this paper focuses on the GMM estimator

θ̂N (WN ) = argmin
θ∈Θ

{
1

N

M∑
i=1

Rigi(Xi, θ)

}′

WN

{
1

N

M∑
i=1

Rigi(Xi, θ)

}
,

where Θ is parameter space of θ∗M and WN is a k × k weight matrix. The choice of WN is
discussed in Section 2.3 below.

2.2. Finite-population asymptotic theory. We now study large sample properties of the
GMM estimator θ̂N (WN ) in our asymptotic framework. We impose the following assumptions.

Assumption.

(1) {Xi}Mi=1 is independent but not necessarily identically distributed. {Ri}Mi=1 is independent
and identically distributed sample of Bernoulli random variables with ρM = P(Ri =

1) satisfying ρM → ρ ∈ [0, 1] as M → ∞. Furthermore, {Xi}Mi=1 and {Ri}Mi=1 are
independent.

(2) Θ is compact. WN converges in probability to a positive definite matrix W .
limM→∞

1
M

∑M
i=1 E[gi(Xi, θ)] = 0 is uniquely satisfied at θ = θ∗ := limM→∞ θ∗M . gi(x, θ)

is continuous at each θ ∈ Θ for almost every x, and supi,M E[supθ∈Θ ||gi(Xi, θ)||4] < ∞.
There exists functions h1(·) and b1i(·) such that limu→0 h1(u) = 0, supi,M E[b1i(Xi)] < ∞,
and ||gi(Xi, θ)− gi(Xi, θ1)|| ≤ b1i(Xi)h1(||θ − θ1||) for each θ, θ1 ∈ Θ.

(3) θ∗ ∈ int(Θ). gi(x, θ) is continuously differentiable on int(Θ) for almost every x, and G :=

limM→∞
1
M

∑M
i=1 E

[
∂gi(Xi,θ

∗
M )

∂θ′

]
has full column rank. There exists functions h2(·) and

b2i(·) and a neighborhood N around θ∗ such that supi,M E[supθ∈N ||∂gi(Xi, θ)/∂θ
′||2] <

∞, limu→0 h2(u) = 0, supi,M E[b2i(Xi)] < ∞, and ||∂gi(Xi, θ)/∂θ
′ − ∂gi(Xi, θ1)/∂θ

′|| ≤
b2i(Xi)h2(||θ − θ1||) for each θ, θ1 ∈ N .
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Assumption (1) is on the sampling framework, which is also employed by Abadie et al. (2020)
and Xu (2021). This implies the sample size N =

∑M
i=1Ri is random and its expectation

E[N ] = MρM diverges at the same rate as M → ∞. Assumptions (2) and (3) collect regularity
conditions on the weight matrix WN and the moment function gi. These are natural adaptations
of the conventional GMM theory to our finite-population setup. Assumption (2) is used to derive
the consistency of the GMM estimator, and Assumption (3) contains additional conditions to
establish asymptotic normality.

Under the above assumptions, the asymptotic properties of the GMM estimator θ̂N (WN ) are
obtained as follows.

Theorem 1.

(1) Under Assumptions (1)-(2), it holds θ̂N (WN )− θ∗M
p→ 0.

(2) Under Assumptions (1)-(3), it holds
√
N(θ̂N (WN )− θ∗M )

d→ N(0, VGMM(W )), (2.2)

where

VGMM(W ) = (G′WG)−1G′W (Ω− ρ∆)WG(G′WG)−1,

Ω = lim
M→∞

1

M

M∑
i=1

E[gi(Xi, θ
∗
M )gi(Xi, θ

∗
M )′],

∆ = lim
M→∞

1

M

M∑
i=1

E[gi(Xi, θ
∗
M )]E[gi(Xi, θ

∗
M )]′.

Theorem 1 (1) says that the GMM estimator θ̂N (WN ) is consistent for the population param-
eter θ∗M , and Theorem 1 (2) derives its asymptotic distribution. Compared to the conventional
infinite-population asymptotics, the main difference is presence of the additional term “ρ∆” in
the asymptotic variance. Letting VC(W ) = (G′WG)−1G′WΩWG(G′WG)−1 be the asymptotic
variance of the GMM estimator under the conventional infinite-population asymptotics, and
VA(W ) = ρ(G′WG)−1G′W∆WG(G′WG)−1 be an additional component, the finite-population
asymptotic variance can be written as VGMM(W ) = VC(W ) − VA(W ). Since ∆ is positive
semi-definite, VA(W ) is also positive semi-definite and VGMM(W ) is always smaller than the con-
ventional variance VC(W ) in the matrix sense (denoted by VGMM(W ) ≤pd VC(W )). Although
VC(W ) can be consistently estimated (as shown below), the component ∆ and thus the variance
VGMM(W ) cannot be consistently estimable in general.

As in Abadie et al. (2020) and Xu (2021), we propose conservative estimators for VGMM(W ).
The first variance estimator is a consistent estimator of the conventional variance VC(W ), that
is

V̂C(WN ) = (Ĝ′WN Ĝ)−1Ĝ′WN Ω̂WN Ĝ(Ĝ′WN Ĝ)−1,
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where Ĝ = 1
N

∑M
i=1Ri∂gi(Xi, θ̂N (WN ))/∂θ′ and Ω̂ = 1

N

∑M
i=1Rigi(Xi, θ̂N (WN ))gi(Xi, θ̂N (WN ))′.

The second variance estimator is constructed by estimating a lower bound for ∆, that is

∆̂Z =
1

N

M∑
i=1

RiP̂
′ziz

′
iP̂ ,

where P̂ = (
∑M

i=1Riziz
′
i)
−1(

∑M
i=1Rizigi(Xi, θ̂N (WN ))). Then the second variance estimator is

V̂Z(WN ) = (Ĝ′WN Ĝ)−1Ĝ′WN (Ω̂− ρ∆̂Z)WN Ĝ(Ĝ′WN Ĝ)−1.

The asymptotic properties of these variance estimators are obtained as follows.

Theorem 2.

(1) Under Assumptions (1)-(3), V̂C(WN )
p→ VC(W ).

(2) In addition to Assumptions (1)-(3), assume that limM→∞
1
M

∑M
i=1 E[gi(Xi, θ

∗
M )]z′i exists,

limM→∞
1
M

∑M
i=1 ziz

′
i exists and non-singular, and supi,M ||zi|| < ∞. Then ∆̂Z converges

in probability to a positive semi-definite matrix ∆Z such that ∆Z ≤pd ∆.
(3) VGMM(W ) ≤pd VZ(W ) ≤pd VC(W ), where VZ(W ) = (G′WG)−1G′W (Ω−ρ∆Z)WG(G′WG)−1.

Since the proof of this theorem is similar to the ones in Xu (2021, Theorems 2.2 and 3.1), it
is omitted. Theorem 2 (1) says that the conventional variance estimator V̂C(WN ) is still consis-
tent for the variance component VC(W ) under the finite-population asymptotics. Theorem 2 (2)
guarantees conservativeness of the second variance estimator V̂Z(WN ) for VGMM(W ). Theorem
2 (3) clarifies the relationships of the limits of the variance estimators. Although we cannot
consistently estimate the asymptotic variance VGMM(W ) of the GMM estimator, we can pro-
vide asymptotically conservative estimators V̂C(WN ) and V̂Z(WN ). We recommend to use the
second estimator V̂Z(WN ) under the finite-population asymptotic framework because it is less
conservative than the first one V̂C(WN ).

2.3. Choice of GMM weight. The asymptotic analysis in the previous subsection focuses on
the case where the weight matrix WN for the GMM estimation is given. Given the different form
of the asymptotic variance VGMM(W ) from the one under the conventional infinite-population
asymptotics, it is interesting to investigate the choice of the weight matrix under the current
setup.

First of all, the variance VGMM(W ) is minimized by Wopt = (Ω− ρ∆)−1 in the matrix sense.
However, due to the component ∆, a consistent estimator of Wopt is not available in general.
Motivated by the discussion in the previous subsection, we can consider two feasible weights,
Ω̂−1 and (Ω̂− ρ∆̂Z)

−1. Theorems 1 and 2 imply
√
N(θ̂N (Ω̂−1)− θ∗M )

d→ N(0, VGMM(Ω−1)),
√
N(θ̂N ((Ω̂− ρ∆̂Z)

−1)− θ∗M )
d→ N(0, VGMM((Ω− ρ∆Z)

−1)).

Although these asymptotic variances are not directly comparable, we can see that

VGMM((Ω− ρ∆Z)
−1) ≤pd VZ((Ω− ρ∆Z)

−1) ≤pd VZ(Ω
−1) ≤pd VC(Ω

−1). (2.3)
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Based on these relationships, to conduct inference on the parameters θ∗M , we recommend to
use the point estimator θ̂N ((Ω̂ − ρ∆̂Z)

−1) combined with the asymptotic variance estimator
V̂Z((Ω̂− ρ∆̂Z)

−1).

3. Numerical illustration

In this section, we conduct a simulation study based on real economic data. We employ the
dataset studied by Lyons and Zhang (2017) and Xu (2021) on entrepreneurship training and
incubation programs in North American undergraduates between 2011 and 2015. Lyons and
Zhang (2017) originally analyzed the entrepreneurial activities of minority groups using data
from 179 finalists out of 188 who accepted the program and 156 finalists out of 166 who did not.
As in Xu (2021), we consider this data as the entire finite-population and analyze the impact of
entrepreneurial activities.

The dataset contains two outcomes for entrepreneurial activities: short-term and ongoing/long-
run. The short-term activity is set to one if the finalist has founded/co-founded a startup or
worked for a venture capital firm or a startup after the program but is no longer working at a
startup. The ongoing/longer-run startup activity takes one if the finalist is currently working
with a startup. For these binary outcomes, we estimate the linear probability model (LPM) and
probit model by gender and outcome types. For each analysis, we include observable fixed at-
tributes: location, program interview scores, prior entrepreneurial experience, study major, year
of study, university ranking, and year and interviewer dummies. However, as described by Lyons
and Zhang (2017) and Xu (2021), unobservable attribute differences between those who accepted
the program and those who did not may cause self-selection into the program. Therefore, we
take the same empirical strategy and discuss mainly the magnitude of the standard errors rather
than point estimates since our concern is the standard errors.

We conduct a simulation study using this data. In each Monte Carlo replication, we draw a
subsample from the population by the sampling ratio ρ = 0.8 (in our preliminary simulations,
we considered different values of ρ, but the results are similar). We compare the M-estimator
with the associated standard error in Xu (2021) with our GMM estimator with the associated
standard errors (i.e., V̂C(WN ) and V̂Z(WN ) in the previous section). For the GMM, as in Imbens
and Lancaster (1994), we use the average outcomes by the treatment status in the population as
additional moments, i.e., we calculate the average probabilities of short-term or ongoing activity
for accepted and unaccepted finalists and incorporate them as additional information in the
GMM estimation. We repeat this procedure 1000 times.

Table 1 reports the Monte Carlo averages and standard errors of the M-estimates θ̂M and GMM
estimates θ̂(Ω̂−1) and θ̂((Ω̂− ρ∆̂Z)

−1) using the weights Ω̂−1 and (Ω̂− ρ∆̂Z)
−1, respectively. It

reports the point estimates and the standard errors of the program treatment effect for male and
female groups by using the linear probability and probit models. From the left panel of Table 1,
we can see that the averages of the estimates are very close for both the M- and GMM estimates
across all cases, and that program participation has a more considerable impact on females than
males on both short-term and ongoing/long-term outcomes. Also the right panel of Table 1
shows that the Monte Carlo standard errors of the GMM estimators are smaller than the ones of
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Table 1. Monte Carlo averages and standard errors

Monte Carlo average Monte Carlo standard error
M-estimator GMM M-estimator GMM

θ̂M θ̂(Ω̂−1) θ̂((Ω̂− ρ∆̂Z)
−1) θ̂M θ̂(Ω̂−1) θ̂((Ω̂− ρ∆̂Z)

−1)
Short term/LPM

Female 0.16446 0.16402 0.16433 0.04327 0.03592 0.03625
Male 0.13854 0.13868 0.13869 0.02410 0.01363 0.01366

Ongoing/LPM
Female 0.27722 0.27654 0.27639 0.05285 0.04382 0.04410
Male 0.09959 0.10023 0.10004 0.02889 0.01687 0.01704

Short term/Probit
Female 1.09711 1.13677 1.14327 0.37302 0.34464 0.34966
Male 0.57978 0.56989 0.56995 0.11001 0.06281 0.06299

Ongoing/Probit
Female 1.28117 1.28771 1.28710 0.29879 0.25940 0.26120
Male 0.28762 0.28210 0.28186 0.07961 0.04836 0.04863

the M-estimators, and that the GMM standard errors are similar for the both weights. In terms
of the standard errors, efficiency gains of the GMM estimators over the M-estimator are around
6.26-17.08% for females and 38.91-43.44% for males.

It should be noted that the Monte Carlo standard errors of the M- and GMM estimators are
estimating (squared root of) the asymptotic variances, which cannot be estimated consistency
under the finite-population asymptotics. In Table 2 below, we present the Monte Carlo averages
of the asymptotically conservative standard errors: (i) Eicker-Huber-White standard error of the
M-estimator, (ii) Xu’s (2021) finite-population standard error of the M-estimator, (iii) Eicker-
Huber-White standard error based on V̂C(Ω̂

−1), (iv) finite-population standard error based on
V̂Z(Ω̂

−1), and (v) finite-population standard error based on V̂Z((Ω̂ − ρ∆̂Z)
−1). Based on the

analysis in Section 2.3, our recommendation is (v) with the GMM estimator θ̂((Ω̂− ρ∆̂Z)
−1).

Table 2. Monte Carlo averages of conservative standard errors

M-estimator GMM
(i) (ii) (iii) (iv) (v)

Short term/LPM
Female 0.11259 0.09851 0.09024 0.08242 0.06483
Male 0.06657 0.06402 0.03824 0.03715 0.03431

Ongoing/LPM
Female 0.13746 0.12020 0.11090 0.10280 0.08074
Male 0.07899 0.07604 0.04465 0.04321 0.03991

Short term/Probit
Female 0.63175 0.56193 0.60853 0.54802 0.43037
Male 0.27185 0.26397 0.16572 0.16140 0.14906

Ongoing/Probit
Female 0.54720 0.49208 0.51811 0.48900 0.37355
Male 0.21433 0.20790 0.12501 0.12134 0.11207

Our findings are summarized as follows. Here we focus on the estimates for females although
similar comments apply to the ones for males. First, we confirm that these asymptotically

7



conservative standard errors do not fall below the corresponding Monte Carlo standard errors
in Table 1. The conventional standard errors in (i) for the M-estimators and (iii) for the GMM
are around 69.36-160.20% and 76.56-153.08% larger than the (infeasible) Monte Carlo standard
errors in Table 1, respectively. On the other hand, the finite-population standard errors (ii), (iv),
and (v) are around 50.64-127.66%, 59.01-129.45%, and 23.08-83.08% larger than the (infeasible)
Monte Carlo standard errors in Table 1, respectively. Based on these results, we can also see
that the finite-population standard errors can alleviate the overestimation of the conventional
standard error. For example, improvements by using the suggested finite-population standard
error (v) over the conventional one (iii) are around 27.19-29.27%. Second, if we compare the
finite-population standard error (ii) for the M-estimator with the recommended one (v) for the
GMM estimator, we can see that (v) is smaller than (ii) by 23.41-34.18%. This result shows
that using the additional moments can also help to reduce the feasible but conservative standard
errors. Finally, Tables 1 and 2 indicate that significance of the coefficients may change depending
on the standard errors. For example, if we look at the estimates and standard errors for females
in the first rows of Tables 1 and 2, inferences based on (i)-(iii) tend to accept the null of no
significance, but (iv)-(v) tend to reject at 5% significance level.
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Appendix A. Mathematical appendix

A.1. Proof of Theorem 1.

A.1.1. Proof of Part (1). It is sufficient to verify the conditions in Newey and McFadden (1994,
Theorem 2.1). Their condition (i) is satisfied due to uniqueness of θ∗ and positive definiteness of
W in Assumption (2). Their condition (ii) (i.e., compactness of the parameter space) is directly
imposed.

To verify their conditions (iii) and (iv), it is sufficient to show that

sup
θ∈Θ

∥∥∥∥∥ 1

N

M∑
i=1

Rigi(Xi, θ)− lim
M→∞

1

M

M∑
i=1

E[gi(Xi, θ)]

∥∥∥∥∥ p→ 0, (A.1)

and limM→∞
1
M

∑M
i=1 E[gi(Xi, θ)] is continuous at each θ ∈ Θ. The continuity of limM→∞

1
M

∑M
i=1 E[gi(Xi, θ)]

follows by the dominated convergence theorem and Jensen’s inequality due to the conditions on
gi(Xi, θ) in Assumption (2). For (A.1), we first note that Abadie et al. (2014, Lemma A.2)
implies the pointwise convergence

1

N

M∑
i=1

Rigi(Xi, θ)− lim
M→∞

1

M

M∑
i=1

E[gi(Xi, θ)]
p→ 0, for each θ ∈ Θ.

Then Newey (1991, Corollary 2.2) combined with the Lipschitz condition in Assumption (2)
implies the uniform convergence in (A.1).

Since we verify all the conditions of Newey and McFadden (1994, Theorem 2.1), the conclusion
follows.

A.1.2. Proof of Part (2). Let ĜN (θ) = 1
N

∑M
i=1Ri

∂gi(Xi,θ)
∂θ′ . By the consistency of θ̂N (WN ) and

Assumption (3) (θ∗ ∈ int(Θ) and differentiability of gi(x, θ)), the estimator θ̂N (WN ) satisfies the
first-order condition

ĜN (θ̂N (WN ))′WN

{
1

N

M∑
i=1

Rigi(Xi, θ̂N (WN ))

}
= 0,

with probability approaching one. By expanding gi(Xi, θ̂N (WN )) around θ̂N (WN ) = θ∗M and
solving for θ̂N (WN )− θ∗M , we obtain

√
N(θ̂N (WN )− θ∗M ) = [ĜN (θ̂N (WN ))′WN ĜN (θ̃N )]−1ĜN (θ̂N (WN ))′WN

1√
N

M∑
i=1

Rigi(Xi, θ
∗
M ),

where θ̃N is a point on the line joining θ̂N (WN ) and θ∗M . Since θ̂N (WN )−θ∗M
p→ 0 and θ̃N−θ∗M

p→
0, it is sufficient for the conclusion to show that

sup
θ∈N

∥∥∥∥ĜN (θ)− E
[
∂gi(Xi, θ)

∂θ′

]∥∥∥∥ p→ 0, (A.2)

1√
N

M∑
i=1

Rigi(Xi, θ
∗
M )

d→ N(0,Ω− ρ∆), (A.3)

for some neighborhood around θ∗.
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For (A.2), Abadie et al. (2014, Lemma A.2) under Assumption (3) implies the pointwise
convergence ĜN (θ) − E

[
∂gi(Xi,θ)

∂θ′

]
p→ 0 for each θ ∈ N . Then Newey (1991, Corollary 2.2)

combined with the Lipschitz condition in Assumption (3) implies the uniform convergence in
(A.2). For (A.3), it follows directly from Abadie et al. (2020, Lemma A.1) under Assumptions
(2)-(3). Therefore, the conclusion follows.
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[14] Práŝková, Z. and P. K. Sen (2009) Asymptotics in finite population sampling, Handbook of Statistics, 29,

489-522, Elsevier.

[15] Rambachan, A. and J. Roth (2020) Design-based uncertainty for quasi-experiments, arXiv preprint

arXiv:2008.00602.

[16] Rosenbaum, P. R. (2002) Observational studies, Springer.

[17] Roth, J. and P. H. Sant’Anna (2023) Efficient estimation for staggered rollout designs, forthcoming in Journal

of Political Economy.

[18] Xu, R. (2021) Potential outcomes and finite-population inference for M-estimators, Econometrics Journal,

24, 162-176.

[19] Xu, R. and J. M. Wooldridge (2022) A design-based approach to spatial correlation, arXiv preprint

arXiv:2211.14354.

10



Graduate School of Economics, Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345,

Japan.

Email address: haruokakehi@keio.jp

Department of Economics, London School of Economics, Houghton Street, London, WC2A

2AE, UK, and Keio Economic Observatory (KEO), 2-15-45 Mita, Minato-ku, Tokyo 108-8345,

Japan.

Email address: t.otsu@lse.ac.uk

11


