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Abstract. A seminal work by Domínguez and Lobato (2004) proposed a consistent estima-

tion method for conditional moment restrictions, which does not rely on additional identification

assumptions as in the GMM estimator using unconditional moments and is free from any user-

chosen number. Their methodology is further extended by Domínguez and Lobato (2015, 2020)

for consistent specification testing of conditional moment restrictions, which may involve gener-

ated variables. We follow up this literature and derive the asymptotic distribution of Domínguez

and Lobato’s (2004) estimator that involves generated variables. Our simulation result illus-

trates that ignoring proxy errors in the generated variables may cause severer distortions for

the coverage or size properties of statistical inference on parameters.

1. Introduction

A seminal work by Domínguez and Lobato (2004) (hereafter, DL) proposed a consistent estima-
tion method for conditional moment restrictions, which does not rely on additional identification
assumptions as in the GMM estimator based on unconditional moments and is free from any
user-chosen number. Their methodology is further extended by Domínguez and Lobato (2015)
for consistent specification testing of conditional moment restrictions.

In empirical analysis, it is often the case that econometric models contain latent or theoreti-
cal variables, which are unobservable but may be estimated by observable data. Such variables,
called generated variables, are often obtained as fitted values or residuals of preliminary regression
fitting. Common examples include expected values of prices or sales, total factor productivity,
relative quality of firms, among others. A recent paper by Domínguez and Lobato (2020) studied
specification testing for conditional moment restrictions, where conditioning variables are gener-
ated ones. The results in Domínguez and Lobato (2020) are important in at least two senses: (a)
their test can be considered as a generalization of Ramsey’s (1969) RESET for possibly nonlinear
conditional moment restrictions, and (b) the asymptotic distributions of their specification test
statistics same as the case where there is no estimation error in generated variables. The latter
is theoretically a very interesting finding since estimation errors for generated variables typically
change asymptotic distributions of statistics (Pagan, 1984).

We follow up the analysis in Domínguez and Lobato (2020) by investigating asymptotic prop-
erties of the DL estimator when conditional moment restrictions involve generated variables.
After accepting the null of specification testing by Domínguez and Lobato (2020), researchers
typically proceed to conduct statistical inference on the parameters in the conditional moment
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restrictions. Then it is critical to characterize the asymptotic distribution of the point estimator
by DL. Given the finding (b) in Domínguez and Lobato (2020), it is also of interest to see whether
the estimation errors of the generated variables will change the asymptotic distribution of the
DL estimator.

In this paper, we derive the asymptotic distributions of the DL estimator of conditional mo-
ment restrictions for two cases: (i) only conditioning variables are generated, and (ii) variables
in both the conditioning set and moment function are generated. We find that in Case (i), the
asymptotic distribution of the DL estimator is not affected by estimation errors for generated
variables. On the other hand, in Case (ii), estimation errors for generated variables change the
limiting distribution of the DL estimator. In particular, additional components due to such er-
rors emerge in the asymptotic variance formula. We propose a consistent estimator for those
additional components and asymptotically valid inference method for parameters in conditional
moment restrictions. Our simulation result illustrates that ignoring proxy errors in the generated
variables may cause severer distortions for the coverage or size properties of statistical inference
on parameters.

2. Main result

Our notation closely follows that of DL. Consider the conditional moment restriction

E[h(Wt, ✓0)|Xt] = 0 a.s., (1)

for a unique ✓0 2 ⇥ ⇢ Rd✓ , where h : RdW ⇥⇥ ! R is a known function up to ✓0 and Xt 2 RdX

is a vector of conditioning variables. Let I{A} be the indicator function for an event A. From
Billingsley (1995, Theorem 16.10iii), (1) holds true if and only if

H(✓0, x) = E[h(Wt, ✓0)I{Xt  x}] for almost every x 2 RdX ,

where I{Xt  x} =
QdX

d=1 I{X
(d)
t  x

(d)} for the d-th element X
(d)
t and x

(d) of Xt and x,
respectively. Thus, the true parameter value ✓0 can be alternatively defined as

✓0 = argmin
✓2⇥

Z
H(✓, x)2dPX(x),

where PX is the probability measure of Xt. By taking its sample analog, DL proposed the
following estimator

✓̂DL = argmin
✓2⇥

1

n3

nX

`=1

 
nX

t=1

h(Wt, ✓0)I{Xt  X`}
!2

. (2)

DL studied asymptotic properties of this estimator. Notably this estimator is free from any user-
specified constant and circumvents a potential inconsistency problem of the GMM estimator
based on unconditional moment restrictions implied from (1).

This paper is concerned with the situation, where Xt is unobservable and specified as Xt =

X(Zt,�0) for observables Zt 2 RdZ and unknown parameters �0 2 B ⇢ Rd� . We also assume that
some estimator �̂ for �0 is available to the researcher so that the generated variable X̂t = X(Zt, �̂)

can be used as a proxy of Xt. In particular, we focus on the following cases:
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• Case (i): Wt is observable (i.e., Wt and Xt have no overlap),
• Case (ii): Wt contains Xt (say, Wt = (Y 0

t , X
0
t)
0).

For each case, we study asymptotic properties of the DL estimator, where Xt is replaced with
the generated variable X̂t. Indeed a recent paper by Domínguez and Lobato (2020) studied
specification testing of the model in (1) with generated variables. In contrast, this paper focuses
on inference for the parameter ✓0.

2.1. Case (i): Wt is observable. We first consider the case where Wt and Xt have no overlap
and Wt is observable. In this case, the DL estimator is defined as

✓̂ = argmin
✓2⇥

1

n3

nX

`=1

 
nX

t=1

h(Wt, ✓)I{X̂t  X̂`}
!2

, (3)

i.e., only the variables in the indicator are generated variables. Let ḣ(Wt, ✓) =
@
@✓h(Wt, ✓). To

study asymptotic properties of ✓̂, we impose the following assumptions.

Assumption.

(i): {Wt, Zt} is ergodic and strictly stationary.
(ii): E[h(Wt, ✓)|Xt] = 0 a.s. if and only if ✓ = ✓0. h(w, ·) is continuous in ⇥ for a.e.

w 2 RdW . ⇥ is compact and ✓0 2 int(⇥). h(w, ·) is once continuously differentiable in
a neighborhood of ✓0 and satisfies E[sup✓2N |ḣ(Wt, ✓)|] < 1 for a neighborhood N✓ of
✓0. E[sup✓2⇥ |h(Wt, ✓)|] < 1 and E[h(Wt, ✓0)4||Xt||1+�] < 1. h(Wt, ✓0) is a martingale
difference sequence with respect to {(Ws, Zs) : s  t}.

(iii): The density of Xt = X(Zt,�0) given the past is bounded and continuous. X(Zt,�) is
differentiable with respect to � in a neighborhood N� of �0, and max1tn sup�2N�

|@X(Zt,�)/@�0| =
op(n1/2). The estimator �̂ admits the asymptotic linear form

p
n(�̂��0) = 1p

n

Pn
t=1  t(�0)+

op(1) for some influence function  t(·) satisfying E[ t(�0)] = 0 and E[|| t(�0)||2] < 1,

Assumptions (i) and (ii) are same as the ones in DL and used to derive the asymptotic
properties of the infeasible estimator ✓̂DL in (2). Assumption (iii) lists additional requirements
on the generated variables, which are analogous to the ones in Domínguez and Lobato (2020).
The form of the influence function  t(·) changes with the estimator �̂, but this assumption is
typically satisfied various

p
n-consistent estimators.

Under these assumptions, the asymptotic distribution of ✓̂ is obtained as follows.

Theorem 1. Suppose Wt is observable. Under Assumption 2.1, it holds
p
n(✓̂ � ✓0)

d! N(0,⌦),

where

⌦ =

✓Z
ḢḢ

0
dPX

◆�1 Z Z
Ḣ(x1)Ḣ(x2)

0�(x1, x2)dPX(x1)dPX(x2)

�✓Z
ḢḢ

0
dPX

◆�1

,

Ḣ(x) = E[ḣ(Wt, ✓0)I{Xt  x}], and �(x1, x2) = E[h(Wt, ✓0)2I{Xt  x1 ^ x2}].

It is interesting to note that the asymptotic distribution of ✓̂ is same as that of the infeasible
DL estimator ✓̂DL. In other words, the proxy error X̂t �Xt is asymptotically negligible in this
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case. By taking sample counterparts, the asymptotic variance ⌦ can be consistently estimated
by

⌦̂ =
1

n2

nX

l=1

nX

l1=1

ḃ
H(X̂l)

"
1

n

nX

t=1

h(Wt, ✓0)
2
I{Xt  X̂l ^ X̂l1}

#
ḃ
H(X̂l1)

0
,

where ḃH(a) = 1
n

Pn
t=1 ḣ(Wt, ✓̂)I{X̂t  a}.

2.2. Case (ii): Wt contains Xt. We next consider the case where Wt = (Y 0
t , X

0
t)
0 contains

unobservable Xt. In this case, the DL estimator is defined as

✓̃ = argmin
✓2⇥

1

n3

nX

`=1

 
nX

t=1

h(Yt, X̂t, ✓)I{X̂t  X̂`}
!2

, (4)

i.e., the generated variables X̂t appear not only in the indicator function I{·} but also in the
moment function h(·). The asymptotic distribution of ✓̃ is obtained as follows.

Theorem 2. Suppose Wt = (Y 0
t , X

0
t)
0. Under Assumption 2.1, it holds

p
n(✓̃ � ✓0)

d! N(0, A0
V A),

where Ḣ�(x) = E[{@h(Yt, X(Zt,�0), ✓0)/@�}I(X(Zt,�0)  x)],

A
0 =

"✓Z
ḢḢ

0
dPX

◆�1

:

✓Z
ḢḢ

0
dPX

◆�1 Z
ḢḢ

0
�dPX

#
,

V =

" R R
Ḣ(x1)Ḣ(x2)0�(x1, x2)dPX(x1)dPX(x2)

R
ḢḢ

0
�dPXR

Ḣ�Ḣ
0
dPX E[ t(�0) t(�0)0]

#
.

It should be noted that in this case the influence of the proxy error X̂t � Xt changes the
asymptotic distribution of the estimator. Since the asymptotic variance of ✓̃ can be written as

A
0
V A = [A0

1 : A
0
2]

"
V1 C

C
0

V2

#"
A1

A2

#
= A

0
1V1A1 +A

0
2C

0
A1 +A

0
1CA2 +A

0
2V2A2,

intuitively the first term corresponds to the asymptotic variance ⌦ in Theorem 1 for ✓̂ or the
infeasible estimator ✓̂DL, and other three terms are additional terms due to the proxy error
X̂t �Xt.
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By taking the sample counterparts, the asymptotic variance of ✓̃ can be consistently estimated

by V̂✓ = (Â0
1 : Â

0
2)

"
V̂1 Ĉ

Ĉ
0

V̂2

# 
Â1

Â2

!
, where ḃH(a) = 1

n

Pn
t=1 ḣ(Yt, X(Zt, �̂), ✓̂)I{X̂t  a},

Â
0
1 =

 
1

n

nX

l=1

ḃ
H(X̂l)

ḃ
H(X̂l)

0

!�1

,

Â
0
2 =

 
1

n

nX

l=1

ḃ
H(X̂l)

ḃ
H(X̂l)

0

!�1
1

n

nX

l=1

ḃ
H(X̂l)

 
1

n

nX

t=1

@h(Yt, X(Zt, �̂), ✓̂)

@�
I{X̂t  X̂l}

!0

,

V̂1 =
1

n2

nX

l=1

nX

l1=1

ḃ
H(X̂l)

"
1

n

nX

t=1

h(Yt, X(Zt, �̂), ✓0)
2
I{Xt  X̂l ^ X̂l1}

#
ḃ
H(X̂l1)

0
,

V̂2 =
1

n

nX

t=1

 t(�̂) t(�̂)
0
, Ĉ =

1

n

nX

t=1

ḃ
H(Xt)h(Yt, X(Zt, �̂), ✓̂) t(�̂)

0
.

3. Simulation

This section illustrates the theoretical results obtained in the last section. Based on DL, we
consider the following data generating process:

Yt = ✓
2
0Xt + ✓0X

2
t + Ut, Xt = �

(1)
0 + �

(2)
0 Zt,

where (Zt, Ut) ⇠ N(0, I2) for t = 1, . . . , 100. We set ✓0 = 5/4 and (�(1)0 ,�
(2)
0 ) = (0, 1). The

generated variable X̂t = �̂
(1)
0 + �̂

(2)
0 Zt is given by the OLS fitted values for the regression from

X̃t = �
(1)
0 +�(2)0 Zt+⇠(Zt)Vt on Zt with Vt ⇠ N(0,�2). To assess the effect of the noise in the gen-

erated variables, we consider ⇠(Zt) = 1 (homoskedastic case) and ⇠(Zt) =
p
0.1 + 0.2Zt + 0.3Z2

t

(heteroskedastic case). For �2, we set �2 2 {0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00}.
Under this setup, we compute the point estimator ✓̃ in (4) and associated confidence intervals

based on the variance estimator V̂✓ obtained in the last section and the variance estimator V̂1,
which does not take into account for the generated variables (called “Adjusted” and “Unadjusted”
in Table 1, respectively). Table 1 reports the biases and standard deviations of ✓̃, and coverage
frequencies of the adjusted and unadjusted confidence intervals based on 20,000 Monte Carlo
replications.

From Table 1, we can clearly see that as the noise level �2 for the generated variable increases,
the unadjusted standard errors tend to be too small and exhibit severe under-coverages. On
the other hand, the adjusted standard error based on the asymptotic distribution in Theorem 2
works well in terms of coverages across all cases.
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Table 1. Simulation results
✓̃ Homoskedastic Heteroskedastic

�
2 Bias SD Unadjusted Adjusted Unadjusted Adjusted

0.25 0.0022 0.0706 86.605% 95.625% 87.1% 95.43%
0.50 0.0066 0.1110 68.8% 95.15% 70.195% 94.845%
0.75 0.0144 0.1613 55.485% 94.76% 56.8% 94.59%
1.00 0.0261 0.2221 46.785% 94.395% 47.815% 94.265%
1.25 0.0431 0.3043 42.195% 93.955% 42.295% 93.78%
1.50 0.0658 0.4060 39.395% 93.45% 39.135% 93.25%
1.75 0.0899 0.4931 38.04% 92.89% 37.085% 92.8%
2.00 0.1211 0.6444 37.93% 92.325% 36.54% 92.215%

Appendix A. Mathematical appendix

A.1. Proof of Theorem 1. The consistency ✓̂ p! ✓0 can be shown by adapting the argument
in the proof of Theorem 1 of DL.

Similar to DL, an expansion of the first order condition of ✓̂ yields

p
n(✓̂ � ✓0) = G

�1
n

1

n

nX

l=1

 
1

n

nX

t=1

ḣ(Wt, ✓̂)I{X̂t  X̂l}
! 

1p
n

nX

t=1

h(Wt, ✓0)I{X̂t  X̂l}
!

= G
�1
n

1

n

nX

l=1

 
1

n

nX

t=1

ḣ(Wt, ✓̂)I{X̂t  X̂l}
! 

1p
n

nX

t=1

h(Wt, ✓0)[I{X̂t  X̂l}� I{Xt  Xl}]
!

+G
�1
n

1

n

nX

l=1

 
1

n

nX

t=1

ḣ(Wt, ✓̂)[I{X̂t  X̂l}� I{Xt  Xl}]
! 

1p
n

nX

t=1

h(Wt, ✓0)I{Xt  Xl}
!

+G
�1
n

1

n

nX

l=1

 
1

n

nX

t=1

ḣ(Wt, ✓̂)I{Xt  Xl}
! 

1p
n

nX

t=1

h(Wt, ✓0)I{Xt  Xl}
!

=: T1 + T2 + T3,

where Gn = 1
n

Pn
l=1

⇣
1
n

Pn
t=1 ḣ(Wt, ✓̂)I{X̂t  X̂l}

⌘⇣
1
n

Pn
t=1 ḣ(Wt, ✓̃)0I{X̂t  X̂l}

⌘
, and ✓̃ is on

the line joining ✓̂ and ✓0. Note that Assumption (iii) guarantees max1ln |X̂l � Xl| = op(1).
For T1 and T2, observe that for any arbitrarily small �̄ > 0,

|T1|  1

n

nX

l=1

�����
1

n

nX

t=1

ḣ(Wt, ✓̂)I{X̂t  X̂l}

����� sup
x,�2[��̄,�̄]

�����
1p
n

nX

t=1

h(Wt, ✓0)[I{Xt  x+ �}� I{Xt  x}]

����� ,

|T2|  1

n

nX

l=1

sup
x,�2[��̄,�̄]

�����
1

n

nX

t=1

ḣ(Wt, ✓̂)[I{Xt  x+ �}� I{Xt  x}]

�����

�����
1p
n

nX

t=1

h(Wt, ✓0)I{Xt  Xl}

����� .

Thus, by applying the arguments in the proof of Dominguez and Lobato (2020, Proposition 1),
we obtain T1

p! 0 and T2
p! 0. Similarly we can show that

T3 =

"
1

n

nX

l=1

 
1

n

nX

t=1

ḣ(Wt, ✓̂)I{Xt  Xl}
! 

1

n

nX

t=1

ḣ(Wt, ✓̃)
0
I{Xt  Xl}

!#�1

⇥ 1

n

nX

l=1

 
1

n

nX

t=1

ḣ(Wt, ✓̂)I{Xt  Xl}
! 

1p
n

nX

t=1

h(Wt, ✓0)I{Xt  Xl}
!

+ op(1).

Therefore, the conclusion follows by Lemmas 1 and 2 of DL.
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A.2. Proof of Theorem 2. The consistency results ✓̂ p! ✓0 and �̂
p! �0 can be shown by

adapting the argument in the proof of Theorem 1 of DL and Assumption (iii), respectively.
By expanding the first order condition of ✓̂ around (✓̂, �̂) = (✓0,�0), we obtain

0 =
1

n

nX

l=1

 
1

n

nX

t=1

ḣ(Yt, X(Zt, �̂), ✓̂)I{X̂t  X̂l}
! 

1

n

nX

t=1

h(Yt, X(Zt, �̂), ✓̂)I{X̂t  X̂l}
!

= ĝn + Ĝ✓,n(✓̂ � ✓0) + Ĝ�,n(�̂ � �0),

where

ĝn =
1

n

nX

l=1

Ḣ1,n(X̂l)

 
1

n

nX

t=1

h(Yt, X(Zt,�0), ✓0)I{X̂t  X̂l}
!
,

Ĝ✓,n =
1

n

nX

l=1

Ḣ1,n(X̂l)

 
1

n

nX

t=1

ḣ(Yt, X(Zt, �̃), ✓̃)I{X̂t  X̂l}
!0

,

Ĝ�,n =
1

n

nX

l=1

Ḣ1,n(X̂l)

 
1

n

nX

t=1

ḣ�(Yt, X(Zt, �̃), ✓̃)I{X̂t  X̂l}
!0

,

Ḣ1,n(x) =
1

n

nX

t=1

ḣ(Yt, X(Zt, �̂), ✓̂)I{X̂t  x}, ḣ�(Yt, X(Zt,�), ✓) =
@h(Yt, X(Zt,�), ✓)

@�
.

By applying the same argument in the proof of Theorem 1, we have
p
nĝn =

p
ngn + op(1), Ĝ✓,n = G✓,n + op(1), Ĝ�,n = G�,n + op(1),

where

gn =
1

n

nX

l=1

Ḣ2,n(Xl)

 
1

n

nX

t=1

h(Yt, X(Zt,�0), ✓0)I{Xt  Xl}
!
,

G✓,n =
1

n

nX

l=1

Ḣ2,n(Xl)

 
1

n

nX

t=1

ḣ(Yt, X(Zt, �̃), ✓̃)I{Xt  Xl}
!0

,

G�,n =
1

n

nX

l=1

Ḣ2,n(Xl)

 
1

n

nX

t=1

ḣ�(Yt, X(Zt, �̃), ✓̃)I{Xt  Xl}
!0

,

Ḣ2,n(x) =
1

n

nX

t=1

ḣ(Yt, X(Zt,�0), ✓0)I{Xt  x}.

Solving for (✓̂ � ✓0) yields

p
n(✓̂ � ✓0) = �[G�1

✓,n : G�1
✓,nG�,n]

" p
ngnp

n(�̂ � �0)

#
+ op(1).

Now Lemma 1 of DL implies G✓,n
p!
R
ḢḢ

0
dPX . Also an adaptation of Lemma 1 of DL

implies G�,n
p!
R
ḢḢ

0
�dPX . Finally, letting ⌘t(·) = E[h(Yt, X(Zt,�0), ✓0), t(�0)0]0I{Xt  ·}],

an adaptation of Lemma 2 of DL implies that 1p
n

Pn
t=1 ⌘t(·) weakly converges to a centered

Gaussian process with the covariance kernel E[⌘t(x1)⌘t(x2)0]. Therefore, the continuous mapping
theorem yields the conclusion.

7



References

[1] Billingsley, P. (1995) Probability and Measure, New York: Wiley.

[2] Domínguez, M. and I. N. Lobato (2004) Consistent estimation of models defined by conditional moment

restrictions, Econometrica, 72, 1601-1615.

[3] Domínguez, M. and I. N. Lobato (2015) A simple omnibus overidentification specification test for time series

econometric models, Econometric Theory, 31, 891-910.

[4] Domínguez, M. and I. N. Lobato (2020) Specification testing with estimated variables, Econometric Reviews,
39, 476-494.

[5] Pagan, A. (1984) Econometric issues in the analysis of regressions with generated regressors, International
Economic Review, 25, 221-247.

[6] Ramsey, J. B. (1969) Tests for specification errors in classical linear least squares regression analysis, Journal
of the Royal Statistical Society, B 31, 350-371.

Department of Economics, The Pennsylvania State University, University Park, PA 16801,

USA.

Email address: ryo.kimoto@psu.edu

Department of Economics, London School of Economics, Houghton Street, London, WC2A

2AE, UK, and Keio Economic Observatory (KEO), 2-15-45 Mita, Minato-ku, Tokyo 108-8345,

Japan.

Email address: t.otsu@lse.ac.uk

8


