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Abstract. This note extends partial identification analyses by de Paula and Tang (2012) and
Aradillas-López and Gandhi (2016) to games with multi-dimensional actions. We discuss two
models of players’ payoff functions in which strategic parameters can be partially identified
without assuming equilibrium selection mechanisms or distribution forms of unobservables.

1. Introduction

Multiplicity of equilibria often causes problems when econometricians estimate game theo-
retic models. de Paula and Tang (2012) derived partial identification results for incomplete
information games where players take binary actions. Specifically, correlations between play-
ers’ actions generated by multiple equilibria provide an insight into signs of interaction effects.
Aradillas-López and Gandhi (2016) extended their results to games where players have ordered
choices. Their identification strategy is based on covariance restrictions between actions and
strategic parts of players’ payoff functions. Although their model and identification analysis are
quite insightful, they focus on the case where each player’s choice set is one-dimensional. This
note extends Aradillas-López and Gandhi’s (2016) analysis and derives covariance restrictions in
games where players have multi-dimensional actions. Examples of games with multi-dimensional
actions include Cournot, Bertrand, and entry games with multi-product firms. In addition, the
model can allow firms to determine both prices and levels of advertisements.

2. Main results

We closely follow the notation in Aradillas-López and Gandhi (2016). Let P be the num-
ber of players. Each player p 2 {1, ..., P} has Kp-dimensional action space Ap =

QKp

k=1A
p
k,

where Ap
k denotes player p’s action set for the k-th dimension. Assume that the set Ap

k has an
ordinal structure for each p and k and can be finite, countably infinite, or uncountable. Let
Y p = (Y p

1 , ..., Y
p
Kp) 2 Ap be player p’s action variable. Let A�p =

Q
q 6=pAq be the action space

of all players other than p, and Y �p = (Y q)q 6=p be a profile of action variables for p’s oppo-
nent. Lowercases yp and y�p represent potential actions for p, and for all players other than
p, respectively. Player p’s payoff function is given by ⌫p(yp, y�p; ⇠p), where ⇠p is a vector of p’s
payoff shifters. ⇠p can be decomposed into observable exogenous variables X and p’s private
payoff shock "p, that is, ⇠p = (X, "p). We note that X and "p can be correlated in an arbitrary
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way, and the dimension of "p is unrestricted. Thus, our specification encompasses not only one-
dimensional shock but also Kp-dimensional shock, which equals to the dimension of the player’s
action.

We impose the following assumption on players’ information structure.

Assumption 1. X is public information and "p is observed only by player p. "p is independent
of "�p conditional on X. The distribution of (X, "p) and payoff structures are common knowledge
among the players.

The conditional independence assumption on the private shock is prevalent in the literature on
estimation of games using covariance restrictions (see, de Paula and Tang, 2012; Aradillas-López
and Ghandi, 2016). It is worthwhile to note that the elements of "p can be arbitrarily correlated.
Based on the above notation, player p’s expected payoff is written as

⌫̄p�(y
p; ⇠p) =

X

y�p2A�p

��p(y�p) · ⌫p(yp, y�p; ⇠p),

where ��p : A�p ! [0, 1] is p’s belief over the other players’ action. A typical solution concept of
static incomplete information games is Bayesian Nash equilibrium (BNE), in which each player
chooses an action that maximizes its expected utility given the equilibrium belief. Given that
players’ shocks are independent (Assumption 1), BNE can be characterized as a collection of
choice probabilities �⇤(X) := {�p

⇤(·|X) : Ap �! [0, 1]}Pp=1 conditional on X, where

�p
⇤(yp|X) = E⇠p|X


I
⇢
yp = arg max

y2Ap
⌫̄p�⇤(y; ⇠

p)

��
,

for each yp 2 Ap, E⇠p|X [·] is expectation under the conditional distribution of ⇠p given X, and
I{·} is the indicator function. Hereafter, we assume that argmaxy2Ap ⌫̄p�⇤(y; ⇠

p) is singleton with
probability one. This assumption is widely employed in the literature.

The next assumption requires that the observed data are generated according to some BNE.

Assumption 2. Each observation is generated according to a BNE, i.e.,

Y p = arg max
y2Ap

⌫̄p�⇤(y; ⇠
p) for some BNE �⇤(X).

We allow that observations are generated from multiple equilibria after conditioning on X. It
is important to note that this assumption does not impose any equilibrium selection mechanisms.

Aradillas-López and Gandhi (2016) considered the case of a univariate action variable (i.e.,
Kp = 1) with an ordinal structure on the action set, and derived a covariance restriction between
p’s action and some strategic component of p’s payoff function, which can used for inference on
the strategic component. Their key idea for partial identification is to explore certain separability
and monotonicity conditions for the payoff function. This paper extends their analysis to the
case of multi-dimensional action variables, where it is not trivial how to extend shape constraints
on the payoff functions, such as separability and monotonicity.
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2.1. First model: Multi-dimensional separability. Take any player p of interest. We first
consider an extension of the separability assumption in Aradillas-López and Gandhi (2016, As-
sumption 1) to the multi-dimensional case. In particular, we impose the following assumption
on p’s payoff.

Assumption 3. The payoff function ⌫p can be expressed as

⌫p(yp, y�p; ⇠p) = ⌫p,a(yp; ⇠p)�
KpX

k=1

⌫p,bk (ypk; ⇠
p) · ⌘pk(y

�p;X),

for some ⌫p,a, {⌫p,bk }k2Kp , and {⌘pk}k2Kp .

In words, the payoff function can be decomposed so that the strategic part (i.e., the second
term) is additively separable with respect to each dimension of the action. For the univariate
case (i.e., Kp = 1), this assumption reduces to Aradillas-López and Gandhi (2016, Assumption
1).

For each belief ��p, the expected payoff for p from choosing yp can be expressed as

⌫̄p�(y
p; ⇠p) =

X

y�p2A�p

��p(y�p) · ⌫p(yp, y�p; ⇠p) = ⌫p,a(yp; ⇠p)�
KpX

k=1

⌫p,bk (ypk; ⇠
p) · ⌘̄p�,k(X),

where ⌘̄p�,k(X) =
P

y�p2A�p ��p(y�p) · ⌘pk(y�p;X). Then for each yp�k 2 Ap
�k, pair of actions

v > u in Ap
k, and pair of beliefs � and �0, we obtain the following characterization for the changes

in the expected payoff between (v, yp�k) and (u, yp�k):

[⌫̄p�(v, y
p
�k; ⇠

p)� ⌫̄p�(u, y
p
�k; ⇠

p)]� [⌫̄p�0(v, y
p
�k; ⇠

p)� ⌫̄p�0(u, y
p
�k; ⇠

p)]

= [⌘̄p�0,k(X)� ⌘̄p�,k(X)] · [⌫p,bk (v; ⇠p)� ⌫p,bk (u; ⇠p)].(1)

We note that due to separability in Assumption 3, the right hand side of this expression is
independent of yp�k.

Hereafter we fix the dimension k of interest and focus on inference for parameters contained
in the component ⌘pk. To derive moment inequalities from this characterization, we impose
monotonicity of vp,bk (ypk; ⇠

p) with respect to ypk.

Assumption 4. For each v > u in Ap
k, it holds ⌫p,bk (v; ⇠p) � ⌫p,bk (u; ⇠p) with probability one.

Under this assumption and (1), the event ⌘̄p�,k(X) � ⌘̄p�0,k(X) implies

⌫̄p�(v, y
p
�k; ⇠

p)� ⌫̄p�(u, y
p
�k; ⇠

p)  ⌫̄p�0(v, y
p
�k; ⇠

p)� ⌫̄p�0(u, y
p
�k; ⇠

p),

for each k and v > u. Based on this, we obtain the following lemma for optimal choices under
given beliefs. Let yp�(⇠p) = (yp�,1(⇠

p), ..., yp�,Kp(⇠p)) = argmaxy2Ap ⌫̄p�(y; ⇠p).

Lemma 1. Under Assumptions 1-4, the following logical relation holds:

⌘̄p�,k(X) � ⌘̄p�0,k(X) and yp�,�k(⇠
p) = yp�0,�k(⇠

p) =) I{yp�,k(⇠
p)  ypk} � I{yp�0,k(⇠

p)  ypk},

with probability one, for each ypk 2 Ap
k, ⇠

p, �, and �0.
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By taking conditional expectation given X and Y p
�k, we can derive the covariance restrictions

(or moment inequalities) for observables.

Theorem 1. Suppose Assumptions 1-4 hold. Then, for each ypk 2 Ap
k, it holds

E[I{Y p
k  ypk} · ⌘

p
k(Y

�p;X)|X,Y p
�k] � E[I{Y p

k  ypk}|X,Y p
�k] · E[⌘pk(Y

�p;X)|X,Y p
�k],

with probability one.

Based on these moment inequalities, we can conduct inference on parameters that specify
⌘pk(Y

�p;X) = ⌘pk(Y
�p;X|✓pk). To implement inference on ✓pk, we can employ several existing

econometric methods for (conditional) moment inequalities, such as Andrews and Shi (2013)
and Chernozhukov, Lee and Rosen (2011). Note that conditioning on the other action variables
Y p
�k is crucial to derive valid moment inequalities.
We can also show that if the BNE is unique, then the above moment inequalities become

equalities. Thus, we can also conduct a statistical test for uniqueness of the BNE by testing the
zero covariance restrictions. Such a test is considered as a multi-dimensional version of de Paula
and Tang’s (2012) test for uniqueness of the BNE.

Example 1. [Entry game with multi-product firms] Consider an entry game by P firms.
Each firm p has Kp formats (e.g., high-priced and low-priced brands). Firm p determines the
number of outlets with respect to each format, yp = (yp1 , . . . , y

p
Kp). Let X be variables which

affect profitability (e.g., population and income). Then consider firm p’s profit from one outlet
of the k-th format given by

⇡p
k(y

p, y�p, ⇠) =
X

q2{1,...,P}

X

l2{1,...,Kq}

(X 0✓pk,ql) · y
q
l + "pk,

where X 0✓pk,ql represents the business stealing effect of firm q’s l-th format on firm p’s k-th
format. Assuming that each firm’s profit is the sum of profits from all of their outlets, firm p’s
payoff function is written as

⌫p(yp, y�p; ⇠) :=
X

k2{1,...,Kp}

ypk · ⇡
p
k(y

p, y�p, ⇠)

=
X

k2{1,...,Kp}

X

l2{1,...,Kp}

ypk · (X
0✓pk,pl) · y

p
l +

X

k2{1,...,Kp}

ypk · "
p
k +

X

k2{1,...,Kp}

ypk
X

q 6=p

X

l2{1,...,Kq}

(X 0✓pk,ql) · y
q
l .

This setup fits into our Assumption 3 by setting

⌫p,a(yp; ⇠p) =
X

k2{1,...,Kp}

X

l2{1,...,Kp}

ypk · (X
0✓pk,pl) · y

p
l +

X

k2{1,...,Kp}

ypk · "
p
k,

⌫p,bk (ypk; ⇠
p) = ypk,

⌘pk(y
�p;X) =

X

q 6=p

X

l2{1,...,Kq}

(X 0✓pk,ql) · y
q
l .

Thus, Theorem 1 can be applied to conduct inference on the strategic parameters ✓pk,ql for
k 2 {1, ...,Kp} and l 2 {1, ...,Kq} with q 6= p, which allows us to see whether firms have
incentives to locate outlets similar to those of their competitors. This is an important empirical
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question since on the one hand, similar types of outlets cannibalize each other’s demand, but on
the other hand, they act as complementary goods. Although here we present an entry model, our
multi-dimensional model encompasses Cournot and Bertrand games with multi-product firms as
well.

2.2. Second model: Strategic interaction through one channel. As another example, this
subsection considers the situation where only one channel directly affects the strategic interaction
term. Again take any player p of interest. We now impose the following assumption.

Assumption 5. ⌫p can be expressed as

⌫p(yp, y�p; ⇠p) = ⌫p,a(yp; ⇠p)� ⌫p,b(yp1 ; ⇠
p) · ⌘p(yp�1, y

�p;X),

for some ⌫p,a, ⌫p,b, and ⌘p.

In words, there exists only one channel yp1 which directly affects the strategic interaction term
⌫p,b. In this case, the expected payoff for p of choosing yp under belief � can be written as

⌫̄p�(y
p; ⇠p) =

X

y�p2A�p

��p(y�p) · ⌫p(yp, y�p; ⇠p) = ⌫p,a(yp; ⇠p)� ⌫p,b(yp1 ; ⇠
p) · ⌘̄p�(y

p
�1, X),

where ⌘̄p�(y
p
�1, X) =

P
y�p2A�p ��p(y�p) · ⌘p(yp�1, y

�p;X). Then for each yp�1 2 Ap
�1, pair of

actions v > u in Ap
1, and pair of beliefs � and �0, we obtain the following characterization for

the changes in the expected payoff between (v, yp�1) and (u, yp�1):

[⌫̄p�(v, y
p
�1; ⇠

p)� ⌫̄p�(u, y
p
�1; ⇠

p)]� [⌫̄p�0(v, y
p
�1; ⇠

p)� ⌫̄p�0(u, y
p
�1; ⇠

p)]

= [⌘̄p�0(y
p
�1, X)� ⌘̄p�(y

p
�1, X)] · [⌫p,b(v; ⇠p)� ⌫p,b(u; ⇠p)].(2)

In addition, we maintain the assumption on monotonicity of vp,b(yp1 ; ⇠p) with respect to yp1 .

Assumption 6. For each v > u in Ap
1, it holds ⌫p,b(v; ⇠p) � ⌫p,b(u; ⇠p) with probability one.

Under this assumption (2), the event ⌘̄p�(y
p
�1, X) � ⌘̄p�0(y

p
�1, X) implies

⌫̄p�(v, y
p
�1; ⇠

p)� ⌫̄p�(u, y
p
�1; ⇠

p)  ⌫̄p�0(v, y
p
�1; ⇠

p)� ⌫̄p�0(u, y
p
�1; ⇠

p),

for each v > u. Based on this, we obtain the following lemma for optimal choices under given
beliefs. Let yp�(⇠p) = (yp�,1(⇠

p), yp�,�1(⇠
p)) = argmaxy2Ap ⌫̄p�(y; ⇠p).

Lemma 2. Under Assumptions 1-2 and 5-6, the following logical relation holds:

⌘̄p�(y
p
�1, X) � ⌘̄p�0(y

p
�1, X) and yp�,�1(⇠

p) = yp�0,�1(⇠
p) =) I{yp�,1(⇠p)  yp1} � I{yp�0,1(⇠

p)  yp1},

with probability one, for each yp1 2 Ap
1, ⇠p, �, and �0.

By taking conditional expectation given X and Y p
�1, we can derive covariance restrictions (or

moment inequalities) for observables.

Theorem 2. Suppose the Assumptions 1-2 and 5-6 hold. Then, for each yp1 2 Ap
1, it holds

E[I{Y p
1  yp1} · ⌘

p(Y p
�1, Y

�p;X)|X,Y p
�1] � E[I{Y p

1  yp1}|X,Y p
�1] · E[⌘p(Y p

�1, Y
�p;X)|X,Y p

�1].
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Similar comments to Theorem 1 apply. Inference on parameters to specify ⌘p(Y p
�1, Y

�p;X)

can be conducted by the existing econometric methods.

Example 2. [Bertrand game with advertisements] We consider a Bertrand game with
advertisements. Each firm decides price and the level of advertisements simultaneously. Let
yp = (yp1 , y

p
2) be player p’s two-dimensional action, where yp1 denotes the price of its product and

yp2 denotes the level of its advertisements. Let X be demand shifters. We assume the following
log-linear demand function for firm p’s product,

logQp =
PX

q=1

ap,q(X) · log yq1 +
PX

q=1

bp,q(X) · log yq2 + "p3.

Firm p’s cost function is given by

Cp(Qp, yp2) = (c1 + "p1) ·Q
p + (c2 + "p2) · y

p
2 .

As discussed above, we allow that ("1, "2, "3) are arbitrarily correlated. Then, we define firm p’s
payoff function as

⌫p(yp, y�p; ⇠) := yp1Q
p � Cp(Qp, yp2)

= �(c2 + "2) · yp2 + {(yp1 � c1 � "1) · exp(ap,p(X) · log yp1 + "p3)}

⇥

2

4exp(bp,p(X) · log yp2) ·
Y

q 6=p

exp(ap,q(X) · log yq1) ·
Y

q 6=p

exp(bp,q(X) · log yq2)

3

5

This setup fits into our Assumption 5 by setting

⌫p,a(yp; ⇠p) = �(c2 + "2) · yp2 ,

⌫p,b(yp1 ; ⇠
p) = (yp1 � c1 � "1) · exp(ap,p(X) · log yp1 + "p3),

⌘p(yp�1, y
�p;X) = exp(bp,p(X) · log yp2) ·

Y

q 6=p

exp(ap,q(X) · log yq1) ·
Y

q 6=p

exp(bp,q(X) · log yq2).

Thus, Theorem 2 can be applied to conduct inference on the parameters of ⌘p. In particular,
the sign of bp,q(X) is of great concern since it is theoretically ambiguous. On the one hand,
advertisements take away competitors’ demand (i.e., business-stealing effects), but on the other
hand, they increase consumers’ awareness of all products in the market (i.e., complementary
effects).

Appendix A. Mathematical appendix

Since the proofs of Lemma 2 and Theorem 2 are similar to those of Lemma 1 and Theorem 1,
respectively, here we only present the proofs for Lemma 1 and Theorem 1.

A.1. Proof of Lemma 1. Take any ⇠, ypk 2 Ap
k, y

p
�k 2 Ap

�k, �, and �0. Then define

Ip�(y
p
k, y

p
�k; ⇠

p) = max
uypk

min
v>ypk

I{⌫̄p�,k(v, y
p
�k; ⇠

p)� ⌫̄p�,k(u, y
p
�k; ⇠

p)  0}.
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By Assumption 4, if ⌘̄p�,k(X) � ⌘̄p�0,k(X), then

(3) Ip�(y
p
k, y

p
�k; ⇠

p) � Ip�0(y
p
k, y

p
�k; ⇠

p).

Also, if yp�,�k(⇠
p) = yp�0,�k(⇠

p) = yp�k, then the definition of Ip�(·) yields

(4) I{yp�,k(⇠
p)  ypk} = Ip�(y

p
k, y

p
�k; ⇠

p), I{yp�0,k(⇠
p)  ypk} = Ip�0(y

p
k, y

p
�k; ⇠

p).

Therefore, by combining (3) and (4), the conclusion follows.

A.2. Proof of Theorem 1. The proof is analogous to that of Aradillas-López and Gandhi
(2016, Theorem 1). Given X, let {�⇤j(X)}Jj=1 be the set of BNE and PS

j (X) be the probability
that the equilibrium �⇤j(X) is selected. The probability that equilibrium �⇤j(X) is selected
conditional on Y p

�k is given by

PS
j (X,Y p

�k) =
PS
j (X) · �p

⇤j(Y
p
�k|X)

PJ
j0=1 P

S
j0 (X) · �p

⇤j0(Y
p
�k|X)

,

where with slight abuse of notation, �p
⇤j(Y

p
�k|X) represents the probability function of Y p

�k under
the equilibrium �⇤j(X). Observe that

E[I{Y p
k  ypk} · ⌘

p
k(Y

�p;X)|X,Y p
�k]

=
JX

j=1

PS
j (X,Y p

�k) · E⇠|X,Y p
�k
[I{yp�⇤j,k(⇠

p)  ypk} · ⌘
p
k(y

�p
�⇤j (⇠

�p);X)
��X,Y p

�k]

=
JX

j=1

PS
j (X,Y p

�k) · E⇠p|X,Y p
�k
[I{yp�⇤j,k(⇠

p)  ypk}
��X,Y p

�k] · E⇠�p|X [⌘pk(y
�p
�⇤j (⇠

�p);X)
��X]

= E⇠p|X,Y p
�k

2

4
JX

j=1

PS
j (X,Y p

�k) · I{y
p
�⇤j (⇠

p)  ypk} · ⌘̄
p
�⇤j,k(X)

������
X,Y p

�k

3

5 ,

where the second equality follows from ⇠p ? ⇠�p|X and Y p
�k ? ⇠�p|X (by Assumption 1). We

also have

E[I{Y p
k  ypk}|X,Y p

�k] · E[⌘pk(Y
�p;X)|X,Y p

�k]

=
JX

j=1

PS
j (X,Y p

�k) · E⇠p|X,Y p
�k
[I{yp�⇤j,k(⇠

p)  ypk}|X,Y p
�k]⇥

JX

j=1

PS
j (X,Y p

�k) · E⇠�p|X [⌘pk(y
�p
�⇤j (⇠

�p);X)|X]

=
JX

j=1

PS
j (X,Y p

�k) · E⇠p|X,Y p
�k
[I{yp�⇤j,k(⇠

p)  ypk}|X,Y p
�k]⇥

JX

j=1

PS
j (X,Y p

�k) · ⌘̄
p
�⇤j,k(X)

= E⇠p|X,Y p
�k

2

4

0

@
JX

j=1

PS
j (X,Y p

�k) · I{y
p
�⇤j,k(⇠

p)  ypk}

1

A⇥

0

@
JX

j=1

PS
j (X,Y p

�k) · ⌘̄
p
�⇤j,k(X)

1

A

������
X,Y p

�k

3

5 .
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Combining these equations, we obtain

E[I{Y p
k  ypk} · ⌘

p
k(Y

�p;X)|X,Y p
�k]� E[I{Y p

k  ypk}|X,Y p
�k] · E[⌘pk(Y

�p;X)|X,Y p
�k]

= E⇠p|X,Y p
�k

2

4
JX

j=1

PS
j (X,Y p

�k) · I{y
P
�⇤j ,k(⇠

p)  ypk} · ⌘̄
p
�⇤j ,k

(X)

�

0

@
JX

j=1

PS
j (X,Y p

�k) · I{y
p
�⇤j ,k

(⇠p)  ypk}

1

A⇥

0

@
JX

j=1

PS
j (X,Y p

�k) · ⌘̄
p
�⇤j ,k

(X)

1

A

������
X,Y p

�k

3

5 .

Note that conditioning on Y p
�k implies conditioning on the event {yp�,�k(⇠

p) = yp�0,�k(⇠
p)}. Now

the object inside the above conditional expectation is nonnegative since it can be expressed as
JX

j=1

PS
j (X,Y p

�k) · I{y
p
�⇤j ,k

(⇠p)  ypk} · ⌘̄
p
�⇤jk

(X)

�

0

@
JX

j=1

PS
j (X,Y p

�k) · I{y
p
�⇤j ,k

(⇠p)  ypk}

1

A⇥

0

@
JX

j=1

PS
j (X,Y p

�k) · ⌘̄
p
�⇤j ,k

(X)

1

A

=
JX

`=1

JX

j=1

PS
` (X,Y p

�k)P
S
j (X,Y p

�k) · I{y
p
�⇤j ,k

(⇠p)  ypk} · (1� I{yp�⇤`,k
(⇠p)  ypk}) · {⌘̄

p
�⇤j ,k

(X)� ⌘̄p�⇤`,k
(X)}

� 0,

where the inequality follows from Lemma 1.
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