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Part III: Estimation of Dynamic Games
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Introduction

I Firms often compete each other overtime

I e.g. chain stores trying expand their network

I One�s current decision a¤ect its own current and future
pro�t

I by its decision itself (direct e¤ect)
I by a¤ecting its own future decision (indirect)
I by a¤ecting its rivals�current and future decisions
(indirect)

I Needs to construct a dynamic game
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Estimation of Dynamic Game

I Dynamic game contains
I strategic interaction between agents
I dynamic optimization

I Straightforward estimation (nested �xed point maximum
likelihood) is virtually impossible (don�t even think about
it!)

I Need to rely on two-step methods:
I Nested pseudo likelihood (NPL) by Aguirregabiria and
Mira (2007)

I Another two-step method or BBL by Bajari, Benkard
and Levin (2008) 4



Recent Research

I Ryan (2009), MIT WP: Studies the impacts of
environmental regulation on entry/investment decisions of
U.S. Portland cement industry

I Sweeting (2009), Duke WP: Studies whether radio
stations reposition their products to deter future entries

I Snider (2009), Minnesota WP: Studies whether airline
companies are engaged in predatory behavior

5



Example: Competition between Hotel Chains

I Suzuki (2009) considers a dynamic entry-exit game
between hotel chains to recover the impacts of land use
regulation on the cost structure of hotel chains

I Assume each local market is isolated

I Hotel chains decide the number of hotels they operate
every period

I Hotel chains incur
I one-shot sunk entry cost to open a new hotel
I sunk entry cost is random and private
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Empirical Structure

I The data
I the number of hotels each chain operates for a certain
period

I each hotel�s revenue
I market characteristics

I By using these data, want to recover the cost parameters
that rationalize both entry/exit behavior and revenue data
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Idea of Identi�cation

I Suppose you observe a market with one �rm overtime

I This observation suggests this market is large enough to
support one hotel but not more

I Revenue data helps to identify cost level
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The Model: Basic

I Common state space: st = (ht , xt)

I Choice variable:
ait 2 A (hit) = f�2,�1, 0, 1, 2g \ f0 � hit + ait � 7g

I Notations:

i 2 f1, . . . ,Ng : hotel chain
t 2 f1, 2, . . . ,∞g : period
hit : # of hotels chain i operates at t

xt : market characteristics

ait : # of hotels chain i opens/closes at t
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The Model: Period Pro�t
I Period pro�t function:

πi (ait , st , vit) = R (st)� δihit � (ei + ρivit) 1 (ait > 0) ait
= Ψ (ait , st , vit)

0 θi

where

Ψ (ait , st , vit) =

2664
Ri (st)
�hit
�1 (ait > 0) ait
�1 (ait > 0) aitvit

3775
θi = [1, δi , ei , ρi ]

I Notations:

δi : operating cost ρi : the stddev of entry cost
ei : the mean of entry cost vit � N (0, 1)
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The Model: Value Function

Vi (st ; σi , σ�i ) = E

"
∞

∑
τ=t

βτ�tΨ (σi (sτ, viτ) , sτ , viτ)
0 θi

����� σ�i

#
= Wi (st ; σ)

0 θi

where

σi (st , vi ) : policy function (σi : S �R ! A)

Wi (st ; σ) = E

"
∞

∑
τ=t

βτ�tΨ (σi (sτ, viτ) , sτ, viτ)

����� σ�i

#
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The Model: Markov Perfect Equilibrium

I In a Markov perfect equilibrium, an equilibrium strategy
σ�i (s, v) must be the best response to its rivals�
equilibrium strategy σ��i :

Vi (s; σ
�
i , σ

�
�i ) � Vi

�
s; σ0i , σ

�
�i
�

for all i , s 2 S and σ0i

I Exploiting the linearity of the period pro�t function,�
Wi (s; σ

�
i , σ

�
�i )�Wi

�
s; σ0i , σ

�
�i
�	

θi � 0
for all i , s 2 S and σ0i
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Nested Fixed Point Algorithm

I Brute-force method is hopeless in most dynamic games

I Evaluating the likelihood function even once could take
more than a day

I Plus, multiple equilibria are prevalent
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Using BBL

I Suzuki (2009) used BBL for estimating structural cost
parameters

I It does not require
I discretization of continuous state variables
I calculating the inverse matrix

I Three continuous variables with 20 intervals would be a
203 � 203 matrix
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Estimation Step 1: Revenue Function Estimation

ln rikt = γi + η1 + x
0
tη2 � η3 ln (Σjhjt)� η4 lnhit + εikt

I Exploit the panel structure

I Market speci�c �xed e¤ects (at least partially) take care
of the endogeneity of hit

I Chain-speci�c e¤ects are also taken into account

I The transition function (population, establishments and
trend) are estimated by AR1 regression
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Estimation Step 2: Policy Function Estimation

y�it = αi + αm + α2 ln xt � α3 lnhit � α4 (lnhit)
2

�α5 (ln (Σjhjt))� α6 (ln (Σjhjt))
2 +ωit

I Estimate the policy function by using an ordered logit

I Use market-dummy to take into account the impact of
unobservable market-speci�c characteristics on their
entry-exit decision

I Take into account the change in choice set
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Estimation Step 3: Recovering Cost Parameters

I Recover chain i�s structural cost parameters θ̂i that
rationalizes the estimated revenue function and the
estimated policy function

I Each chain�s policy function must be the best response to
its rivals�policy functions

I The observed policy must beat other possible policies
when its rivals�play observed policies

I BBL shows that we can exploit this property to identify
structural parameters

I No data are used once policy functions are estimated17



Implementing BBL Step by Step

I Focus on chain i�s structural parameters in market m

I Generate chain i�s fake policies fσmi g
NI
m=1 by slightly

perturbing the observed policy function
I How we should make perturbations is an open question

I Di¤erent perturbation will a¤ect the e¢ ciency of
estimators

I Might make a sense to consider a perturbation with clear
intuition (e.g., never enter)
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Implementing BBL Step by Step

I Want to approximate the expected sum of future pro�t
when they follow certain strategies

I Assuming other chains follow the observed policy σ̂j 6=i ,
simulate the model and calculate Wi (st ; σ) for the
observed policy σ̂i as well as σmi

I Simulate economy for T periods

I T should be large enough so that βT is su¢ ciently small

I The number of simulation should be very large since it
needs to capture entry/exit behavior 19



Exploiting Linearity

I Note that linearity assumption allows us to separate
simulation from estimation

I Simulation calculates Wi (st ; σ)

I No structural parameters are directly involved

I Otherwise, need to conduct simulations for each θ
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Computational Tips in BBL

I Under linearity, you can separate simulation from
optimization

I BBL requires running a large number of simulations

I Good thing is each simulation is independent

I Can save time by using multiple processors/computers at
the same time

I Matlab has a toolbox for parallel computation

21



Implementing BBL Step by Step

I Try to �nd the set of parameters that minimizes the
following loss function:

θ�i = argmin
θ

NI

∑
m=1

(min fgm (θ) , 0g)2

gm (θ) =
�
Wi (s; σ

�
i , σ

�
�i )�Wi

�
s; σ0i , σ

�
�i
�	

θi

I When the observed policy beats a fake policy, it adds zero
to the loss function

I When a fake policy beats the observed policy, it adds
squared pro�t-di¤erence to the loss function
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Conducting Counterfactual Experiments

I A motivation of doing structural estimation is to conduct
counterfactual experiments

I Using structural parameters, the model can calculate an
equilibrium under alternative policies

I Can compare two competing policies by comparing the
welfare level they bring
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Conducting Counterfactual Experiments

I Note that in counterfactual experiments, you need to
solve the model explicitly

I In complicated models, solving an equilibrium might be
virtually impossible

I You might need to make a model simple in simulations

I Also multiple equilibria are prevalent in dynamic games

I The impacts of policies might not be pinned down
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Summary

I Go over the very basics of estimating a dynamics
entry-exit model

I Nested �xed point algorithm turns out to be virtually
impossible

I BBL with linearity assumption signi�cantly reduces
computational burden without hurting consistency
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