Mini Course on Structural Estimation of Static and Dynamic Games

Junichi Suzuki

University of Toronto

June 1st, 2009

1

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Part III: Estimation of Dynamic Games

2

Introduction

- Firms often compete each other overtime
- e.g. chain stores trying expand their network
- One's current decision affect its own current and future profit
 - by its decision itself (direct effect)
 - by affecting its own future decision (indirect)
 - by affecting its rivals' current and future decisions (indirect)

3

Needs to construct a dynamic game

Estimation of Dynamic Game

- Dynamic game contains
 - strategic interaction between agents
 - dynamic optimization
- Straightforward estimation (nested fixed point maximum likelihood) is virtually impossible (don't even think about it!)
- Need to rely on two-step methods:
 - Nested pseudo likelihood (NPL) by Aguirregabiria and Mira (2007)
 - Another two-step method or BBL by Bajari, Benkard and Levin (2008)
 4

Recent Research

- Ryan (2009), MIT WP: Studies the impacts of environmental regulation on entry/investment decisions of U.S. Portland cement industry
- Sweeting (2009), Duke WP: Studies whether radio stations reposition their products to deter future entries
- Snider (2009), Minnesota WP: Studies whether airline companies are engaged in predatory behavior

Example: Competition between Hotel Chains

- Suzuki (2009) considers a dynamic entry-exit game between hotel chains to recover the impacts of land use regulation on the cost structure of hotel chains
- Assume each local market is isolated
- Hotel chains decide the number of hotels they operate every period
- Hotel chains incur
 - one-shot sunk entry cost to open a new hotel
 - sunk entry cost is random and private

Empirical Structure

The data

- the number of hotels each chain operates for a certain period
- each hotel's revenue
- market characteristics
- By using these data, want to recover the cost parameters that rationalize both entry/exit behavior and revenue data

7

Idea of Identification

- Suppose you observe a market with one firm overtime
- This observation suggests this market is large enough to support one hotel but not more

8

Revenue data helps to identify cost level

The Model: Basic

• Common state space: $s_t = (h_t, x_t)$

• Choice variable:
$$a_{it} \in A(h_{it}) = \{-2, -1, 0, 1, 2\} \cap \{0 \le h_{it} + a_{it} \le 7\}$$

Notations:

- $i \in \{1, \ldots, N\}$: hotel chain
- $t \in \{1, 2, \ldots, \infty\}$: period
- h_{it} : # of hotels chain *i* operates at *t*
- *x_t* : market characteristics
- a_{it} : # of hotels chain *i* opens/closes at *t* 9

The Model: Period Profit

Period profit function:

$$\begin{aligned} \pi_i \left(\mathbf{a}_{it}, \mathbf{s}_t, \mathbf{v}_{it} \right) &= R\left(\mathbf{s}_t \right) - \delta_i h_{it} - \left(\mathbf{e}_i + \rho_i \mathbf{v}_{it} \right) \mathbf{1} \left(\mathbf{a}_{it} > 0 \right) \mathbf{a}_{it} \\ &= \Psi \left(\mathbf{a}_{it}, \mathbf{s}_t, \mathbf{v}_{it} \right)' \theta_i \end{aligned}$$

where

$$\Psi(a_{it}, s_t, v_{it}) = \begin{bmatrix} R_i(s_t) \\ -h_{it} \\ -1(a_{it} > 0) a_{it} \\ -1(a_{it} > 0) a_{it} v_{it} \end{bmatrix}$$

$$\theta_i = [1, \delta_i, e_i, \rho_i]$$

Notations:

 δ_{i} : operating cost ρ_{i} : the stddev of entry cost e_{i} : the mean of entry cost $v_{it} \sim N(0, 1)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Model: Value Function

$$V_{i}(s_{t};\sigma_{i},\sigma_{-i}) = E\left[\sum_{\tau=t}^{\infty}\beta^{\tau-t}\Psi(\sigma_{i}(s_{\tau},v_{i_{\tau}}),s_{\tau},v_{i_{\tau}})'\theta_{i}\middle|\sigma_{-i}\right]$$
$$= W_{i}(s_{t};\sigma)'\theta_{i}$$

where

$$\sigma_{i}(s_{t}, v_{i}) : \text{policy function } (\sigma_{i} : S \times \mathbb{R} \to A)$$

$$W_{i}(s_{t}; \sigma) = E\left[\sum_{\tau=t}^{\infty} \beta^{\tau-t} \Psi(\sigma_{i}(s_{\tau}, v_{i\tau}), s_{\tau}, v_{i\tau}) \middle| \sigma_{-i}\right]$$

The Model: Markov Perfect Equilibrium

 In a Markov perfect equilibrium, an equilibrium strategy σ^{*}_i (s, ν) must be the best response to its rivals' equilibrium strategy σ^{*}_{-i}:

$$V_i(s; \sigma_i^*, \sigma_{-i}^*) \ge V_i(s; \sigma_i', \sigma_{-i}^*)$$

for all $i, s \in S$ and σ_i'

Exploiting the linearity of the period profit function,

$$\left\{ W_i\left(s;\sigma_i^*,\sigma_{-i}^*\right) - W_i\left(s;\sigma_i',\sigma_{-i}^*\right) \right\} \theta_i \ge 0$$

for all $i, s \in S$ and σ_i'

12

Nested Fixed Point Algorithm

- Brute-force method is hopeless in most dynamic games
- Evaluating the likelihood function even once could take more than a day
- Plus, multiple equilibria are prevalent

Using BBL

- Suzuki (2009) used BBL for estimating structural cost parameters
- It does not require
 - discretization of continuous state variables
 - calculating the inverse matrix
- \blacktriangleright Three continuous variables with 20 intervals would be a $20^3 \times 20^3$ matrix

14

Estimation Step 1: Revenue Function Estimation

$$\ln r_{ikt} = \gamma_i + \eta_1 + x'_t \eta_2 - \eta_3 \ln (\Sigma_j h_{jt}) - \eta_4 \ln h_{it} + \epsilon_{ikt}$$

- Exploit the panel structure
- Market specific fixed effects (at least partially) take care of the endogeneity of h_{it}
- Chain-specific effects are also taken into account
- The transition function (population, establishments and trend) are estimated by AR1 regression

15

Estimation Step 2: Policy Function Estimation

$$y_{it}^{*} = \alpha_{i} + \alpha_{m} + \alpha_{2} \ln x_{t} - \alpha_{3} \ln h_{it} - \alpha_{4} (\ln h_{it})^{2} -\alpha_{5} (\ln (\Sigma_{j} h_{jt})) - \alpha_{6} (\ln (\Sigma_{j} h_{jt}))^{2} + \omega_{it}$$

- Estimate the policy function by using an ordered logit
- Use market-dummy to take into account the impact of unobservable market-specific characteristics on their entry-exit decision
- Take into account the change in choice set

Estimation Step 3: Recovering Cost Parameters

- Recover chain i's structural cost parameters θ̂_i that rationalizes the estimated revenue function and the estimated policy function
- Each chain's policy function must be the best response to its rivals' policy functions
- The observed policy must beat other possible policies when its rivals' play observed policies
- BBL shows that we can exploit this property to identify structural parameters
- ► No data are used once policy functions are estimated

Implementing BBL Step by Step

- ▶ Focus on chain *i*'s structural parameters in market *m*
- Generate chain *i*'s fake policies {σ_i^m}_{m=1}^{NI} by slightly perturbing the observed policy function
 - How we should make perturbations is an open question
 - Different perturbation will affect the efficiency of estimators
 - Might make a sense to consider a perturbation with clear intuition (e.g., never enter)

Implementing BBL Step by Step

- Want to approximate the expected sum of future profit when they follow certain strategies
- Assuming other chains follow the observed policy *σ̂_{j≠i}*, simulate the model and calculate *W_i*(*s_t*; *σ*) for the observed policy *ô_i* as well as *σ^m_i*
- Simulate economy for T periods
- T should be large enough so that β^T is sufficiently small
- The number of simulation should be very large since it needs to capture entry/exit behavior 19

Exploiting Linearity

- Note that linearity assumption allows us to separate simulation from estimation
- Simulation calculates $W_i(s_t; \sigma)$
- ► No structural parameters are directly involved
- \blacktriangleright Otherwise, need to conduct simulations for each θ

20

Computational Tips in BBL

- Under linearity, you can separate simulation from optimization
- BBL requires running a large number of simulations
- Good thing is each simulation is independent
- Can save time by using multiple processors/computers at the same time
- Matlab has a toolbox for parallel computation

Implementing BBL Step by Step

Try to find the set of parameters that minimizes the following loss function:

$$\begin{aligned} \theta_i^* &= \arg\min_{\theta} \sum_{m=1}^{NI} \left(\min\left\{g_m\left(\theta\right), 0\right\}\right)^2 \\ g_m\left(\theta\right) &= \left\{W_i\left(s; \sigma_i^*, \sigma_{-i}^*\right) - W_i\left(s; \sigma_i', \sigma_{-i}^*\right)\right\}\theta_i \end{aligned}$$

- When the observed policy beats a fake policy, it adds zero to the loss function
- When a fake policy beats the observed policy, it adds squared profit-difference to the loss function 22

Conducting Counterfactual Experiments

- A motivation of doing structural estimation is to conduct counterfactual experiments
- Using structural parameters, the model can calculate an equilibrium under alternative policies
- Can compare two competing policies by comparing the welfare level they bring

Conducting Counterfactual Experiments

- Note that in counterfactual experiments, you need to solve the model explicitly
- In complicated models, solving an equilibrium might be virtually impossible
- You might need to make a model simple in simulations
- Also multiple equilibria are prevalent in dynamic games
- > The impacts of policies might not be pinned down

Summary

- Go over the very basics of estimating a dynamics entry-exit model
- Nested fixed point algorithm turns out to be virtually impossible
- BBL with linearity assumption significantly reduces computational burden without hurting consistency