Mini Course on Structural Estimation of Static and Dynamic Games

Junichi Suzuki

University of Toronto

June 1st, 2009

About the Instructor

- Name: Junichi Suzuki
- ► Affiliation: Dept. of Economics, University of Toronto
- Major: Empirical Industrial Organization, Urban Economics
- Studied in Keio (BA, MA) and Univ. of Minnesota (PhD)

Today's Goal

- Present the very basics of estimating structural parameters of
 - static games (lecture 1)
 - single-agent dynamic optimization problem (lecture 2)
 - dynamic games (lecture 3)
- Designed for practitioners
- Focus on their implementation rather than proving their statistical properties etc

Outline of Each Section

- Construct a basic model
- Clarify the type of data
- Consider three approaches:
 - Conventional MLE
 - Nested-pseudo likelihood by Aguirregabiria and Mira (2007)

"BBL" by Bajari, Benkard and Levin (2007)

What Not Covered Today (But Typically Covered Graduate Empirical IO!)

 Demand: Berry, Levison and Pakes (1992), Nevo (2001), Petrin (2002)

- Productivity: Olley and Pakes (1996), Levinsohn and Petrin (2003)
- Auctions: Haile and Tamer (2003)

What is Structural Estimation?

- Consider a parametric model that characterizes agents' behavior and equilibrium
- The model should be consistent with economic theory
- Each parameter of the model represents agents' primary characteristics
 - Preference
 - Technology
- Structural estimation aims to identify these parameters from the data

Why Structural Estimation?

- Pros
 - Can present channels through which policy affects the resulting equilibrium
 - Can simulate policy impacts on welfare
 - Closely related to economic theory
 - Assumptions made are explicit
- Cons
 - High entry cost (theory, econometrics, numerical methods, data mining etc..)
 - Often require significant amount of computations

Computation

- Need to be familiar with some programming language
- For most cases, STATA is not enough
- One way is to use matrix-based languages (e.g., Matlab, Gauss)
 - Easy to write a program
 - Speed is slow
- Another option is to use primitive languages (e.g., Fortran, C)

- Time consuming to write a program
- Speed is faster

Part I: Estimation of Static Games

Motivation

- Many economic activities involve interaction between agents
 - Store opening of convenience stores
 - Adoption of technologies: VHS vs Beta, Blue-ray vs HD DVD
 - Product type choice: high-end service, low-end service
- Estimation should take into account potential interactions between agents

Need game theoretic models

Model: Simple Simultaneous Static Game

- N players: $i \in \{1, \dots, N\}$
- Each player's choice $a_i \in A = \{0, 1, \dots, K\}$
- ► Each player's payoff: $u_i(a_{i,a-i}, s, \epsilon_i) = \pi_i(a_{i,a-i}, s) + \epsilon_i(a_i)$
 - s: state variables
 - *ε_i*: choice-specific private shock: variables unobservable to econometricians, *ε_i* (0) = 0

Examples

- Bresnahan and Reiss (1991): A = {Entry, Not}
- Mazzeo (2002):
 A = {Not, Entry to low end, Entry to high end}
- Seim (2006) :
 A = {Not, Enter to Mkt 1, ..., Enter to Mkt M}

Suzuki (2009):
 A = {Not, Open 1 hotel, ..., Open 7 hotels}

Case 1: Game of Complete Information

- *ϵ_i* can be firm-specific (*ϵ_i ≠ ϵ_j*) as well as market-specific (*ϵ_i = ϵ_j*)
- Players do not face uncertainty (but econometricians do!)
- ► A pure strategy Nash equilibrium of this game is a set of strategies {a_i^{*} (s, ε)}_{i=1}^N such that

$$\pi_{i} (a_{i}^{*}(s, \epsilon), a_{-i}^{*}(s, \epsilon), s) + \epsilon_{i} (a_{i}^{*}(s, \epsilon)) \\ \geq \pi_{i} (a_{i}(s, \epsilon), a_{-i}^{*}(s, \epsilon), s) + \epsilon_{i} (a_{i}(s, \epsilon)) \\ \text{for all } i \in \{1, \dots, N\} \text{ and } a_{i} \in A$$

Case 2: Game of Incomplete Information

- Each player can observe only its own ϵ_i but not ϵ_{-i}
- Only the distribution of ϵ_{-i} is known
- Each player makes its decision based on its belief about the distribution of its rivals' decisions

 Need to employ a Bayesian Nash equilibrium as an equilibrium concept Pure Strategy Bayesian Nash Equilibrium

- 1. a set of strategies $\left\{a_{i}^{*}\left(s,\epsilon_{i},\sigma_{-i}\left(\cdot
 ight)
 ight)
 ight\}_{i=1}^{N}$ and
- 2. equilibrium beliefs $\{\sigma_i^*(a_{i,s})\}_{i=1}^N$

such that

$$\sum_{\mathbf{a}_{-i}} \sigma_{-i}^{*} (\mathbf{a}_{-i}, \mathbf{s}) [\pi_{i} (\mathbf{a}_{i}^{*} (\mathbf{s}, \epsilon_{i}, \sigma_{-i} (\cdot)), \mathbf{a}_{-i}, \mathbf{s}) \\ + \epsilon_{i} (\mathbf{a}_{i}^{*} (\mathbf{s}, \epsilon_{i}, \sigma_{-i} (\cdot)))] \\ \geq \sum \sigma_{-i}^{**} (\mathbf{a}_{-i}, \mathbf{s}) [\pi_{i} (\mathbf{a}_{i}, \mathbf{a}_{-i}, \mathbf{s}) + \epsilon_{i} (\mathbf{a}_{i})]$$

for all $i \in \{1, \dots, N\}$ and for all $a_i \in A$ and

$$\sigma_{i}^{*}(a,s) = \int 1(a = \arg \max \sum_{a_{-i}} \sigma_{-i}^{*}(a_{-i},s) [\pi_{i}(a_{i}^{*}(s,\epsilon_{i},\sigma_{-i}^{*}(\cdot)) + \epsilon_{i}(a_{i}^{*}(s,\epsilon_{i},\sigma_{-i}^{*}(\cdot)))]dF(\epsilon_{i})$$

Estimation

- ► Want to recover the structural parameters of π(a_i, a_{-i}, s) from the data
- Data should consist of firms' decisions ({a_i}^N_{i=1}) and state variables s, coming from several markets
- Maximum likelihood is the most straightfoward way
- Stick with a simple entry model
- Start with a mere regression and examine why it is problematic

Example: Entry Model

Consider the following entry model:

$$\pi(\mathbf{a}_{i}, \mathbf{a}_{-i}, \mathbf{s}) = \mathbf{a}_{i} \left[\alpha_{1} + \alpha_{2} \ln \mathsf{Pop} - \alpha_{3} \left(\sum_{j} \mathbf{a}_{j \neq i} \right) + \epsilon_{i} \right]$$
$$\mathbf{a}_{i} \in \{0, 1\}$$

- One's profit depends on the number of rival firms and local market size
- Each firm has two options: "enter" (a_i = 1) or "not enter" (a_i = 0)

Estimation: Reduced-Form Regression

Consider the following reduced form regression:

$$y^*=eta_1+eta_2 \ln {\it Pop}+\eta \qquad$$
 where $y=\left\{egin{array}{cc} 1 & {
m if}\; y^*>0\ 0 & {
m otherwise} \end{array}
ight.$

- Parameter estimates will be consistent
- β₂ does not reflect the direct impacts of population increase on profits (β₂ ≠ α₂)
- Rather, it also includes the impacts of its rivals' entry triggered by population increase

Estimation: Ignoring Interaction

Next consider the following regression:

$$y^* = \alpha_1 + \alpha_2 \ln Pop - \alpha_3 \left(\sum_j a_{j \neq i}\right) + \epsilon_i$$

where $y = \begin{cases} 1 & \text{if } y^* > 0 \\ 0 & \text{otherwise} \end{cases}$

- In a game of complete information, resulting estimates are inconsistent since α_j and ε_j are correlated
- In a game of incomplete information, resulting estimates are incorrect since player *i* does not know the value of *a_j* when it makes its own decision

Estimation: Taking Interaction Into Account

- Want to estimate the model by explicitly taking into account interaction between players
- Possible multiple equilibria are one of the main obstacles
- Games of complete information:
 - For a given error term {€_i}^N_{i=1}, more than one pair of entry decisions satisfy the conditions for N.E.
- Game of incomplete information
 - more than one belief and entry policy satisfy the conditions for B.N.E.

Dealing with Multiple Equilibria

- When a model has multiple equilibria, likelihood is not well-defined
- Several ways to deal with
 - Look at a variable that is unique to all equilibria (e.g., the total number of entrants)
 - Impose some arbitrary selection rule (e.g., pick the one that maximizes total profit)

Bound estimators

Computational Issue: A Game of Complete Information

- Assume that the model has the unique equilibrium
- A game of COMPLETE information often requires the calculation of highly complicated integrals
- ► To calculate the chance of certain events, need to find all combinations of {e_i}^N_{i=1} that leads this event and calculate the integrals

Often requires simulation to calculate the integral

Computational Issue: A Game of Incomplete Information

- Calculation of the likelihood in a game of INCOMPLETE information requires the calculation of equilibrium belief
- To evaluate the likelihood function for certain parameter values,
 - calculate the equilibrium belief as a fixed point of the best response function
 - calculate the probability that each player picks the choice
 - take log and summing them up
- This algorithm is called a nested fixed-point algorithm
- Note that finding the fixed point for every set of parameter can be computationally super costly!
- ► See Seim (2006) for its implementation

Example:

Let's go back to the simple example:

$$\pi(\mathbf{a}_{i}, \mathbf{a}_{-i}, \mathbf{s}) = \mathbf{a}_{i} \left[\alpha_{2} \ln \mathsf{Pop} - \alpha_{3} \left(\sum_{j} \mathbf{a}_{j \neq i} \right) + \epsilon_{i} \right]$$
$$\mathbf{a}_{i} \in \{0, 1\}$$

Consider applying MLE

Nested Fixed Point Algorithms

To evaluate the likelihood for a given (α₁, α₂, α₃), need to find equilibrium belief first

$$\sigma^*(\alpha) = \Phi\left(\alpha_2 \ln \operatorname{Pop} - \alpha_3 \sum_{k=0}^{n-1} \left[\binom{n}{k} \sigma^{*k} (1 - \sigma^*)^{n-k} k \right] \right)$$

- Note that you might find more than one σ* (α) that satisfied this equation
- Next evaluate the resulting likelihood by calculating

$$L_{i} = \sigma^{*}(\alpha)^{1(a_{i}=1)} (1 - \sigma^{*}(\alpha))^{1(a_{i}=0)}$$

ln $L = \sum [1 (a_{i}=1) \ln \sigma^{*}(\alpha) + 1 (a_{i}=0) \ln (1 - \sigma^{*}(\alpha))]$

Difficulty in Nested Fixed Point Algorithms

- Calculating equilibrium belief for a given parameter requires solving all solutions for a system of nonlinear equations
- No algorithm guarantees to find all solutions
- Need to rely on generic methods such as homotopy method
- When the model has multiple equilibria, likelihoods are not well-defined

Two-Step Methods

- Nested fixed point algorithm is not practical when games involve many players and large choice sets
- Two step methods avoid this computation problem at the expense of efficiency (but not consistency!)

 You can apply similar idea to the estimation of single-agent dynamic optimization problem as well as dynamic games

Step 1: Estimate Reduced-Form Policy Functions

- Estimate each agent's choice probabilities conditional on state variables in a flexible way
- In practice, people use logit/probit by adding state variables and their interaction terms
- Can use more flexible semiparametric method as well. See Bajari et al.
- This policy function should represent their equilibrium strategy
- Implicitly assume that players always pick the same equilibrium even under multiple equilibria

Step 2: Estimate Structural Parameters

- Assume its rivals follow the policy function estimated in the first step
- For each possible choice, we can calculate choice-specific expected payoff
- That transforms the model into the one of single-agent discrete choice model

- Estimation only involves multinomial probit/logit
- No need to find the fixed point anymore

Step 1: Estimating Policy Functions

Consider the following a flexible logit/probit:

$$egin{array}{rcl} y^{*} &=& eta_{1}+eta_{2}\ln Pop+eta_{3}\left(\ln Pop
ight)^{2}+\eta \ \end{array} \ where \ y &=& egin{cases} 1 & ext{if }y^{*}>0 \ 0 & ext{otherwise} \end{array}$$

 Assuming symmetry, can calculate the probability of entry conditional on population

$$\begin{split} \hat{p}\left(\textit{Pop}\right) &= & \mathsf{Pr}\left(\beta_1 + \beta_2 \ln\textit{Pop} + \beta_3 \left(\ln\textit{Pop}\right)^2 + \eta > 0\right) \\ &= & 1 - \Phi\left(-\beta_1 - \beta_2 \ln\textit{Pop} - \beta_3 \left(\ln\textit{Pop}\right)^2\right) \end{split}$$

Can calculate the distribution of its rivals' entry decisions

$$\widehat{\Pr}\left(\sum_{j} a_{j\neq i} = k\right) = \binom{n}{k} \widehat{p} \left(\operatorname{Pop}\right)^{k} \left(1 - \widehat{p} \left(\operatorname{Pop}\right)\right)^{n-k}$$

Step 2: Estimating Structural Parameters

- Now we can estimate structural parameters
- Estimate the following binomial discrete choice model

$$y^* = \alpha_1 + \alpha_2 \ln Pop - \alpha_3 \left[\sum_{k=0}^{N-1} \widehat{\Pr}\left(\sum_j a_{j\neq i} = k\right) k\right] + \epsilon_i$$

- Note that we transformed a model with interactions between players into single-agent discrete choice model
- We are going to use the same trick again and again

Nested Pseudo Likelihood Approach

- Aguiregabiria and Mira (2007) suggests iterating this two-step method
- Iteration does not help to increase asymptotic efficiency
- > In finite sample, iteration might help to improve efficiency

Implementing NPL

- Using this updated-policy function, maximize the (pseudo) likelihood and obtain new updated parameter estimates
- Using parameter estimates and policy function as given, calculate each player's best response
- Check if updated policy functions are close enough to the previous policy function

Iterate this process until you get convergence

Summary

- Study very basics of estimation of static games
- As games become complicated, brute-force estimation becomes impractical
- Two step method works at the expense of efficiency