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About the Instructor

I Name: Junichi Suzuki

I A¢ liation: Dept. of Economics, University of Toronto

I Major: Empirical Industrial Organization, Urban
Economics

I Studied in Keio (BA, MA) and Univ. of Minnesota (PhD)



Today�s Goal

I Present the very basics of estimating structural
parameters of

I static games (lecture 1)
I single-agent dynamic optimization problem (lecture 2)
I dynamic games (lecture 3)

I Designed for practitioners

I Focus on their implementation rather than proving their
statistical properties etc



Outline of Each Section

I Construct a basic model

I Clarify the type of data

I Consider three approaches:
I Conventional MLE

I Nested-pseudo likelihood by Aguirregabiria and Mira
(2007)

I "BBL" by Bajari, Benkard and Levin (2007)



What Not Covered Today (But Typically Covered
Graduate Empirical IO!)

I Demand: Berry, Levison and Pakes (1992), Nevo (2001),
Petrin (2002)

I Productivity: Olley and Pakes (1996), Levinsohn and
Petrin (2003)

I Auctions: Haile and Tamer (2003)



What is Structural Estimation?

I Consider a parametric model that characterizes agents�
behavior and equilibrium

I The model should be consistent with economic theory

I Each parameter of the model represents agents�primary
characteristics

I Preference
I Technology

I Structural estimation aims to identify these parameters
from the data



Why Structural Estimation?

I Pros
I Can present channels through which policy a¤ects the
resulting equilibrium

I Can simulate policy impacts on welfare

I Closely related to economic theory

I Assumptions made are explicit

I Cons
I High entry cost (theory, econometrics, numerical
methods, data mining etc..)

I Often require signi�cant amount of computations



Computation

I Need to be familiar with some programming language

I For most cases, STATA is not enough

I One way is to use matrix-based languages (e.g., Matlab,
Gauss)

I Easy to write a program
I Speed is slow

I Another option is to use primitive languages (e.g.,
Fortran, C)

I Time consuming to write a program
I Speed is faster



Part I: Estimation of Static Games



Motivation

I Many economic activities involve interaction between
agents

I Store opening of convenience stores
I Adoption of technologies: VHS vs Beta, Blue-ray vs HD
DVD

I Product type choice: high-end service, low-end service

I Estimation should take into account potential interactions
between agents

I Need game theoretic models



Model: Simple Simultaneous Static Game

I N players: i 2 f1, . . .Ng

I Each player�s choice ai 2 A = f0, 1, . . . ,Kg

I Each player�s payo¤:
ui (ai ,a�i , s, εi ) = πi (ai ,a�i , s) + εi (ai )

I s: state variables
I εi : choice-speci�c private shock: variables unobservable
to econometricians, εi (0) = 0



Examples

I Bresnahan and Reiss (1991): A = fEntry, Notg

I Mazzeo (2002):
A = fNot, Entry to low end, Entry to high endg

I Seim (2006) :
A = fNot, Enter to Mkt 1, . . . , Enter to Mkt Mg

I Suzuki (2009):
A = fNot, Open 1 hotel, . . . ,Open 7 hotelsg



Case 1: Game of Complete Information

I Each player observes not only its own εi but also its
rivals�ε�i

I εi can be �rm-speci�c (εi 6= εj ) as well as
market-speci�c (εi = εj )

I Players do not face uncertainty (but econometricians do!)

I A pure strategy Nash equilibrium of this game is a set of
strategies fa�i (s, ε)g

N
i=1 such that

πi (a
�
i (s, ε) , a

�
�i (s, ε) , s) + εi (a

�
i (s, ε))

� πi (ai (s, ε) , a
�
�i (s, ε) , s) + εi (ai (s, ε))

for all i 2 f1, . . .Ng and ai 2 A



Case 2: Game of Incomplete Information

I Each player can observe only its own εi but not ε�i

I Only the distribution of ε�i is known

I Each player makes its decision based on its belief about
the distribution of its rivals�decisions

I Need to employ a Bayesian Nash equilibrium as an
equilibrium concept



Pure Strategy Bayesian Nash Equilibrium
1. a set of strategies fa�i (s, εi , σ�i (�))g

N
i=1 and

2. equilibrium beliefs fσ�i (ai ,s)g
N
i=1

such that

∑
a�i
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Estimation

I Want to recover the structural parameters of
π (ai , a�i , s) from the data

I Data should consist of �rms�decisions
�
faigNi=1

�
and

state variables s, coming from several markets

I Maximum likelihood is the most straightfoward way

I Stick with a simple entry model

I Start with a mere regression and examine why it is
problematic



Example: Entry Model

I Consider the following entry model:

π (ai , a�i , s) = ai

"
α1 + α2 lnPop� α3

 
∑
j
aj 6=i

!
+ εi

#
ai 2 f0, 1g

I One�s pro�t depends on the number of rival �rms and
local market size

I Each �rm has two options: "enter" (ai = 1) or "not
enter" (ai = 0)



Estimation: Reduced-Form Regression

I Consider the following reduced form regression:

y� = β1 + β2 lnPop+ η where y =
�
1 if y� > 0
0 otherwise

I Parameter estimates will be consistent

I β2 does not re�ect the direct impacts of population
increase on pro�ts (β2 6= α2)

I Rather, it also includes the impacts of its rivals�entry
triggered by population increase



Estimation: Ignoring Interaction
I Next consider the following regression:

y� = α1 + α2 lnPop� α3

 
∑
j
aj 6=i

!
+ εi

where y =

�
1 if y� > 0
0 otherwise

I In a game of complete information, resulting estimates
are inconsistent since αj and εi are correlated

I When εi is high, its rivals are less likely to enter, causing
underestimation of α3

I In a game of incomplete information, resulting estimates
are incorrect since player i does not know the value of aj
when it makes its own decision



Estimation: Taking Interaction Into Account

I Want to estimate the model by explicitly taking into
account interaction between players

I Possible multiple equilibria are one of the main obstacles

I Games of complete information:
I for a given error term fεigNi=1, more than one pair of
entry decisions satisfy the conditions for N.E.

I Game of incomplete information
I more than one belief and entry policy satisfy the
conditions for B.N.E.



Dealing with Multiple Equilibria

I When a model has multiple equilibria, likelihood is not
well-de�ned

I Several ways to deal with
I Look at a variable that is unique to all equilibria (e.g.,
the total number of entrants)

I Impose some arbitrary selection rule (e.g., pick the one
that maximizes total pro�t)

I Bound estimators



Computational Issue: A Game of Complete
Information

I Assume that the model has the unique equilibrium

I A game of COMPLETE information often requires the
calculation of highly complicated integrals

I To calculate the chance of certain events, need to �nd all
combinations of fεigNi=1 that leads this event and
calculate the integrals

I Often requires simulation to calculate the integral



Computational Issue: A Game of Incomplete
Information

I Calculation of the likelihood in a game of INCOMPLETE
information requires the calculation of equilibrium belief

I To evaluate the likelihood function for certain parameter
values,

I calculate the equilibrium belief as a �xed point of the
best response function

I calculate the probability that each player picks the choice
I take log and summing them up

I This algorithm is called a nested �xed-point algorithm

I Note that �nding the �xed point for every set of
parameter can be computationally super costly!

I See Seim (2006) for its implementation



Example:

I Let�s go back to the simple example:

π (ai , a�i , s) = ai

"
α2 lnPop� α3

 
∑
j
aj 6=i

!
+ εi

#
ai 2 f0, 1g

I Assume �rms are symmetric and play the same
equilibrium strategy and hence the same equilibrium belief
σ�

I Consider applying MLE



Nested Fixed Point Algorithms

I To evaluate the likelihood for a given (α1, α2, α3), need
to �nd equilibrium belief �rst

σ� (α) = Φ

 
α2 lnPop� α3

n�1
∑
k=0

��
n
k

�
σ�k (1� σ�)n�k k

�!

I Note that you might �nd more than one σ� (α) that
satis�ed this equation

I Next evaluate the resulting likelihood by calculating

Li = σ� (α)1(ai=1) (1� σ� (α))1(ai=0)

lnL = ∑ [1 (ai = 1) lnσ� (α) + 1 (ai = 0) ln (1� σ� (α))]



Di¢ culty in Nested Fixed Point Algorithms

I Calculating equilibrium belief for a given parameter
requires solving all solutions for a system of nonlinear
equations

I No algorithm guarantees to �nd all solutions

I Need to rely on generic methods such as homotopy
method

I When the model has multiple equilibria, likelihoods are
not well-de�ned



Two-Step Methods

I Nested �xed point algorithm is not practical when games
involve many players and large choice sets

I Two step methods avoid this computation problem at the
expense of e¢ ciency (but not consistency!)

I You can apply similar idea to the estimation of
single-agent dynamic optimization problem as well as
dynamic games



Step 1: Estimate Reduced-Form Policy Functions

I Estimate each agent�s choice probabilities conditional on
state variables in a �exible way

I In practice, people use logit/probit by adding state
variables and their interaction terms

I Can use more �exible semiparametric method as well. See
Bajari et al.

I This policy function should represent their equilibrium
strategy

I Implicitly assume that players always pick the same
equilibrium even under multiple equilibria



Step 2: Estimate Structural Parameters

I Assume its rivals follow the policy function estimated in
the �rst step

I For each possible choice, we can calculate choice-speci�c
expected payo¤

I That transforms the model into the one of single-agent
discrete choice model

I Estimation only involves multinomial probit/logit

I No need to �nd the �xed point anymore



Step 1: Estimating Policy Functions
I Consider the following a �exible logit/probit:

y� = β1 + β2 lnPop+ β3 (lnPop)
2 + η

where y =

�
1 if y� > 0
0 otherwise

I Assuming symmetry, can calculate the probability of entry
conditional on population

p̂ (Pop) = Pr
�

β1 + β2 lnPop+ β3 (lnPop)
2 + η > 0

�
= 1�Φ

�
�β1 � β2 lnPop� β3 (lnPop)

2
�

I Can calculate the distribution of its rivals�entry decisions

bPr ∑
j
aj 6=i = k

!
=

�
n
k

�
p̂ (Pop)k (1� p̂ (Pop))n�k



Step 2: Estimating Structural Parameters

I Now we can estimate structural parameters

I Estimate the following binomial discrete choice model

y� = α1+ α2 lnPop� α3

"
N�1
∑
k=0

bPr ∑
j
aj 6=i = k

!
k

#
+ εi

I Note that we transformed a model with interactions
between players into single-agent discrete choice model

I We are going to use the same trick again and again



Nested Pseudo Likelihood Approach

I Aguiregabiria and Mira (2007) suggests iterating this
two-step method

I Iteration does not help to increase asymptotic e¢ ciency

I In �nite sample, iteration might help to improve e¢ ciency



Implementing NPL

I Using this updated-policy function, maximize the
(pseudo) likelihood and obtain new updated parameter
estimates

I Using parameter estimates and policy function as given,
calculate each player�s best response

I Check if updated policy functions are close enough to the
previous policy function

I Iterate this process until you get convergence



Summary

I Study very basics of estimation of static games

I As games become complicated, brute-force estimation
becomes impractical

I Two step method works at the expense of e¢ ciency


